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Abstract. The optical spatial frequencies of tumor interstitial fluid (TIF) are investigated. As a concentrated col-
loidal suspension of interacting native nanoparticles, the TIF can develop internal ordering under shear stress
that may hinder delivery of antitumor agents within tumors. A systematic method is presented to characterize
the TIF nanometer-scale microstructure in a model suspension of superparamagnetic iron-oxide nanoparticles
and reconstituted high-density lipoprotein by Fourier spatial frequency (FSF) analysis so as to differentiate
between jammed and fluid structural features in static transmission electron microscope images. The FSF
method addresses one obstacle faced in achieving quantitative dosimetry to neoplastic tissue, that of detecting
these nanoscale barriers to transport, such as would occur in the extravascular space immediately surrounding
target cells. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.19.1.015004]
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1 Introduction
Very often one cannot recover recognizable images from
subdiffraction-limit sized particles by optical imaging due to
scattering. Using the Fourier spatial frequency (FSF) spectrum,
valuable information from the scattered light from aperiodic and
random structures formed by such particles can be recovered.
It is well established that the intensity pattern in an image plane
is a composition of “spatial frequencies” much in the same way
that a spectral domain signal is composed of various color
frequencies. The spatial frequency spectrum can be directly
obtained from the transmission electron microscope (TEM)
and optical microscope images by taking the Fourier transform
(FT); each image containing a waveform composed of spatial
frequencies, with units of cycles per unit distance, which is
analogous to the Fourier decomposition of color frequencies—
in cycles per cm—used in frequency-domain analysis.1 Laser
speckle analysis is one method that uses spatial frequencies
to distinguish regions of moving material from motionless
material. These regions are then stitched together in laser
speckle imaging (LSI) to reveal detailed images,2 or analyzed
in the frequency domain in micro-optical coherence tomogra-
phy.3 Cerbino and Trappe4 introduced a related novel technique
called Differential Dynamic Microscopy (DDM) in which they
used Fourier optics to investigate the time-resolved dispersion of
73- and 420-nm diameter colloidal particles in aqueous suspen-
sion. Each of these methods derive their constitutive equations
from the mathematical formalism of the FT of scattered light in

an image plane, and then integrate over the region of interest to
obtain a measure of correlation as a function of total intensity.
Most recently Pu et al. used FSF analysis to detect early stages
in cervical cancer. Using confocal fluorescence images of H&E
stained stroma, they focused on the identification of character-
istic spatial-spectrum signatures to distinguish between normal
and neoplastic tissue.5

The fluid mechanics of tumor interstitial fluid (TIF) are dif-
ficult to evaluate. It is known that interstitial pressure in the
tumor deviates significantly from that in normal tissue, typically
developing a high internal pressure and a strong pressure gra-
dient from the interior of the tumor outward.6 This in turn dic-
tates that interstitial fluid flow in tumor will deviate significantly
from that in normal tissue. But the technological challenges to
detect and monitor the TIF pressure are so great that only a lim-
ited number quantitative studies have ever been attempted in the
area,7 and experiments to detect and quantify convective flow of
the TIF through tumor have yet to be reported. Molecular
targeting strategies have been rigorously investigated in recent
years, and provide a detailed map of where targeted agents go,
allowing us to indentify to some extent the flow pathways within
the tumor.8,9 Unfortunately we cannot identify barriers to trans-
port except by evidence of failure.

It is evident that the heterogeneous structure and composition
of the extracellular matrix (ECM) has a crucial role to play in
intra-tumor flow.10 The composition of the TIF is such that
microstructural order can develop due to particle interaction,
leading in turn to high particle pressure in shear flow, which
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is related to shear thickening and jamming.11,12 The difficulties
of predicting the transport of an exogenous agent within the TIF
emerges even in pharmacokinetic models, which can predict the
effect of agents delivered to the plasma compartment, but fail to
predict the outcome in solid tumor.13 To further complicate
matters, sustained interparticle forces may lead to an irreversible
aggregation. Under certain conditions, native lipoproteins,
a principal component of the TIF, have been observed to develop
a sealing effect that retards trans-endothelial transport.14

Unfortunately, we have no means to observe these interactions
and structures directly. In vivo methods have a limit of detection
in the range of 10−5 m, and the diffraction limit of experimen-
tally available light, on the order of 200 nm, effectively sets
a lower bound on all optical methods.

This letter describes an innovative approach to use spatial
frequency analysis of stationery TEM images to characterize
the self assembled structures of high-density lipoproteins (HDL)
in aqueous solution, and to distinguish the different length
scales of particle interaction at each stage of aggregation, from
single-particle to an array. Information on the HDL structure in
tissue-like media is critical for understanding the effect of HDL
structure on transport of anti tumor drugs within the tumor.

Figure 1 shows the image of TEM of reconstituted high-den-
sity lipoprotein (rHDL) particles; from single particles suspen-
sion [Fig. 1(a)], to jammed solid [Fig. 1(b)], to fused membrane
[Fig. 1(c)]. Understanding the distribution of superparamagnetic
iron-oxide nanoparticles (SPION) within target tissues is vital to
the application of these important contrast agents in imaging
cancer and atherosclerosis. Since, the SPION have been shown
to interact with the ECM and the TIF,15 we have prepared a typ-
ical formulation, admixed with rHDL at a 1∶100 ratio. Our
objective is to extract the characteristic spatial frequencies of
a given sample, so that it can be uniquely identified by a spatial
frequency spectrum taken of any image of the sample, and quan-
titatively compared for similarity to the spatial frequency spec-
trum of other images of similar or different samples. The
overarching goal of this work is to develop a method for pattern
recognition to allow characterization of the TIF microstructure

in situ by evaluating laser speckle and optical scattering of
FSF data.

2 Method
The equation for Fourier spectrum for spatial frequencies can be
simplified as16

F½qðx; yÞ� ¼ R½qðx; yÞ� þ jI½qðx; yÞ�
¼ F½qðx; yÞ� exp½−jqðx; yÞ�; (1)

where Rðx; yÞ and Iðx; yÞ are the real and imaginary parts,
respectively, and qðx; yÞ is the intensity of the image at the
point ðx; yÞ. The power spectrum is defined as

F2½qðx; yÞ� ¼ R2½qðx; yÞ� þ I2½qðx; yÞ�; (2)

and encodes information relating to pixel intensity in two-
dimensional (2-D) space. In images such as those in Fig. 1,
the light and dark areas, and the spatial patterns they make, cor-
respond to the peaks and troughs of the waveforms described by
Eq. 2. In Cerbino and Trappe,4 the Fourier power spectrum is
used to evaluate the displacement between intensity peaks
acquired at time points separated by an experimental time
Δt, so that jFðq;ΔtÞj2 ¼ AðqÞf1 − exp½−Δt∕τðqÞ�g þ BðqÞ,
where A is a function that relates intensity to a physical feature
of the image, B is a noise term due to instrumentation, and the
characteristic time, τðqÞ, is a fitting parameter used to identify
characteristic temporal-spatial patterns in the particle-scattered
light. Since the TEM images we will use in our analysis
are not evolving in time, we can simplify the equation derived
in Cerbino et al. by eliminating the time-dependent term to
give

jF½qðx; yÞ�j2 ¼ A½qðx; yÞ� þ B½qðx; yÞ�: (3)

But the fact that the function A½qðx; yÞ� is image-specific
means that although we can uniquely identify individual images
in this way, unless the two images are very close to identical,

Fig. 1 The transmission electron microscope (TEM) image of reconstituted high-density lipoprotein
(rHDL) and superparamagnetic iron-oxide nanoparticles (SPION). The rHDL particles, composed of
a 1∶125 molar ratio of ApoA-I to phospholipid, appear light, against a background staining of phospho-
tungstic acid, the SPION are black. The field of view is 250 × 250 nm, the diameter of the iron oxide
particles is 12 nm. The smallest rHDL particles are disk shaped and have approximate dimensions
of 3 by 10 nm. The upper inset in each panel is the noise function B½qðx; yÞ� of that image, the
lower inset is the image with the noise signal subtracted T ½qðx; yÞ� þ S½qðx; yÞ�, as described in the
text. (a) Viscous fluid. Between 5 and 15 particles stack together to form rouleaux of ∼30 × 50 nm.
(b) Jammed solid. Some phase transition is evident, as the individual rHDL disks begin to fuse into longer
structures, and create complicated interactions with the SPION. (c) Phase transition. Continuous mem-
branes form and the SPION are trapped within the fused rHDL structure.
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correlation of symmetry between images will be qualitative at
best. This will not provide a sufficient basis upon which to dis-
tinguish one fluid microstructure state from another, since the
actual information acquired from an imaging plane will be
unique for each target preparation. In the case of DDM, or
LSI, integrating over the entire region of interest provides a spa-
tial averaging that smoothes out image-specific details that differ
between different images of the same specimen.2 The disadvant-
age of this method is that it reduces all spatial information in the
image to a single scalar value. Although use of the power spec-
trum in the FSF analysis restores much of the information lost by
integrating, it is still an incomplete descriptor of the original
object, as phase information is discarded.17 However, in the
instant application, the observation can be made that the char-
acteristic frequencies we seek must exist independently of our
ability to reconstruct a visual object from them. To extract a true
characteristic spectrum, we first note that the power spectrum of
the FT F½qðx; yÞ�2 for any waveform qðx; yÞ, is a vector-valued
function in frequency space where each frequency is a linearly
independent basis vector. As a sum of linearly independent vec-
tor-valued functions, the power spectrum can be decomposed
into the following component spectra: (1) a “true”, idealized
periodic function, T½qðx; yÞ�, being a family of well-defined
characteristic spatial frequencies which we hope to find,
(2) a specific signal S½qðx; yÞ�, that completes the image, and
(3) noise from instrumentation and detection, B½qðx; yÞ�, which
we wish to eliminate. This allows us to rewrite Eq. (3) as

jF½qðx; yÞ�j2 ¼ T½qðx; yÞ� þ S½qðx; yÞ� þ B½qðx; yÞ�: (4)

By definition, the characteristic frequencies, T½qðx; yÞ�, will
not be found in the image-specific function S½qðx; yÞ�, or vice
versa, which means that T½qðx; yÞ� and S½qðx; yÞ� are orthogonal,
by the standard definition of orthogonality in vector analysis:
their inner product is zero. This definition gives us, when
applied to Eq. (4):

jF½qðx; yÞ�j2 · T½qðx; yÞ� ¼ T½qðx; yÞ� · T½qðx; yÞ�
þ S½qðx; yÞ� · T½qðx; yÞ� þ B½qðx; yÞ� · T½qðx; yÞ�
¼ T½qðx; yÞ�2 þ B½qðx; yÞ� · T½qðx; yÞ�:

(5)

As can be seen from Eq. (5), even if we remove image-spe-
cific frequencies by taking the inner product with a known
T½qðx; yÞ�, noise will always be proportional to signal, a factor
of sensitivity and resolution that is common to all Fourier spatial
analysis applications. Even worse, signal variance is heterosce-
dactic; doubling the sample area doubles the sampling rate,
exponentially increasing the high-frequency noise. The solution
is found by a modification of the averaging strategy of LSI and
DDM. Rather than averaging over the whole image, we seek a
length scale L intermediate to the smallest feature of the image
and the limit of detection such that, by averaging the FT of
a large number of subregions of this size, a single spatial
frequency corresponding to the smallest resolvable object is
reinforced, and all other high frequencies are eliminated.
Successively averaging larger and larger regions allows us to
identifying the key lowest frequency at each length scale. By
this step-wise progression, we can eliminate the noise signal.
The resulting power spectrum of the noise-corrected FT is
the sum of the power spectrum components of the characteristic
and specific frequencies, T½qðx; yÞ� þ S½qðx; yÞ�. To determine

if two images A and B have similar spatial characteristics,
the correlation function QðA; BÞ is the inner product of their
respective noise-corrected FT:

QðA; BÞ ¼ ½TA þ SA� · ½TB þ SB�
¼ ½TA · TB� þ 2½SA · TB� þ ½SA · SB�; (6)

where TA is T½qðx; yÞ� and SA is S½qðx; yÞ� of image A, and the
subscripts refer to the respective images. But since, by definition
TA ¼ TB ¼ T, and S is image specific, for SA · SB ¼ 0, Eq. (6)
becomes:

QðA; BÞ ¼ T2: (7)

3 Materials
Specimens were prepared consisting of phospholipid-coated
SPION, and rHDL particles, by a modification of the method
established in Ref. 18. Briefly, 1-myristoyl-2-hydroxy-sn-glyc-
ero-3-phosphocholine (MHPC, Avanti Polar Lipids, Alabaster,
Alabama, cat. no. 855575) was dissolved in a 1∶4 mixture of
methanol:chloroform, and deposited on a glass vial as a thin
film by solvent evaporation, subsequently hydrated with deion-
ized water and sonicated to form a cloudy suspension. The lipid
suspension was heated to 70°C and a suspension of 10 nm d. oleic
acid coated Fe2O3 nanocrystals (Ocean Nanotech, Springdale,
Arkansas cat. no. SOR-10-50) in chloroform was added dropwise
to the stirred mixture to remove the solvent. Apolipoprotein A-I
(Sigma, St. Louis, Missouri cat. no. A0722) at a molar ratio of
1∶125 protein:lipid was added, and the mixture was allowed to
cool at room temperature overnight. Successful formation of
nanometer-sized particles was confirmed by the clear appearance
of the solution, and size measurement by dynamic light scattering.

Images were acquired by negative-stain TEM as previously
reported.19 The sample was transferred to an ammonium acetate
buffer (described in Ref. 20), then 10 μl was diluted 1∶1 with
2% phosphotungstic acid. This solution was then drop-cast onto
a carbon-coated Formvar-covered copper grid. Samples were
allowed to dry and imaged using a Hitachi 7650 TEM coupled
to a Scientific Instruments and Applications, (Duluth, Georgia)
digital camera and operating at 80 kV.

Sample dispersions are heterogeneous, but they are isotropic
with respect to the image frame, and the FT of the region is
therefore rotationally invariant. This allows us to extract a one-
dimensional trace at the dominant frequency as a representative
spectrum for the image. Spatial averaging was accomplished
by dividing each image into N subregions, as described in
the Appendix, taking the FFT of each region, and calculating
a pixel-by-pixel mean for the ensemble of images, Qavgðx; yÞ ¼
1∕NΣqiðx; yÞ, where i ranges from 1 to N.

All numerical operations were written in elementary Matlab®

(MathWorks, Natick, Massachusetts) functions, the 2-D FFT
was calculated using the Matlab built-in function FFT2.

4 Results
Assembled rHDL particles are on the order of 10 nm, but can
stack together to form a secondary structure called rouleaux as
shown in Fig. 1(a), with a length scale of 10 to 100 nm, or fuse
with each other to form a lipid bilayer membrane with a thick-
ness on the order of 10 nm, but a lateral ordering on a scale
>1000 nm, as shown in Fig. 1(c), or a state intermediate to
the two, shown in Fig. 1(b).
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To check if the stepwise spatial averaging method was
removing characteristic information as well as background
noise, we reconstructed background images from the averaged
FT by inverse the FT, which is shown as an inset in Fig. 1(a).
There is a qualitative similarity to the background of all images,
which is consistent with the fact that they come from similar
preparations and instrumentation. By inspection, we can deter-
mine that recognizable features from the images are almost
entirely absent, giving visual corroboration that the averaging
method is not removing characteristic signals.

To determine if our method could recover a known spatial
frequency from dissimilar but related model images, we pre-
pared an image of a noise-obscured sine-wave pattern, and
a second model image, with a number of alternate sinusoidal
frequencies generated by rotation of the original pattern as
shown in Fig. 2(a). We then evaluated these images as described
above, removing noise through spatial averaging, and generat-
ing the power spectrum. As shown in Fig. 2(b), even after
removing the noise, the characteristic and image-specific signals
do not show an obvious correlation. The identification of

Fig. 2 Testing on model sine wave image. (a) Comparison wasmade between two images with the same
true spatial frequency, and with unique noise elements present in each image. (b) The Fourier transform
of the images in (a) (red trace, open triangles, corresponding to image 1, blue trace, closed circles, cor-
responding to image 2). (c) The inner product of the family of spatial frequencies identified by the method
described in the text identifies the true frequency to be 40 cycles per 1000 pixels.
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Fig. 3 Characteristic spatial frequency correlation of different images of the same sample. (a) and
(b) show enlarged regions of images used in the analysis. Each full image was taken under identical
conditions, of identical samples, at different locations in the TEM grid. (c) The characteristic and
image-specific spatial frequencies T ½qðx; yÞ� þ S½qðx; yÞ� in the text, derived by removing the noise
signal, and taking the power spectrum of image (a). (d) The characteristic and image-specific spatial
frequencies of image (b). Note the poor correlation between (c) and (d). (e) The inner product of
(c) and (d) reveals the characteristic frequency spectrum for the preparation. The spectrum of image
(a) is represented as green circles, image (b) as blue triangles, and the inner product as red squares.
Of particular note is the frequencies 20 and 32 μm−1, corresponding to length scales of the length and
width of a single rouleaux (dashed arrows and white boxes). The frequency peak at 40 μm−1 corresponds
to a length scale of 25 nm, and is most likely the axial view of a single rouleaux. The presence of
a frequency was considered significant if it fell within a min-max range of an order of magnitude on
the vertical axis, i.e., 0.01 to 0.1 for this figure.
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a single strong frequency is shown in Fig. 2(c), revealing that the
two images do, in fact, share a common frequency.

To demonstrate the elimination of image-specific spatial
frequencies between the FT of similar sample preparations,
we applied the method to the two images shown in Figs. 3(a)
and 3(b). Note that even though image-specific frequencies are
not eliminated from their respective power spectra, Figs. 3(c)
and 3(d), the inner product of the two reveals striking points of
similarity in Fig. 3(e), as predicted by Eq. (7).

To investigate the utility of this method to differentiate
between nanoparticle preparations of dissimilar spatial charac-
teristics, we compared the images shown in Figs. 4(a) and 4(b).
The inner product of their respective noise-corrected FT is
shown in Fig. 4(c). All samples show a high degree of correla-
tion at high frequencies, and at the frequency corresponding to
the spacing between SPION. The absence of spatial frequencies
at 20 and 32 μm−1 show that there is a significant difference
between the two at the length scale corresponding to the dimen-
sions of a rouleaux. To confirm that the spatial frequencies cor-
respond to meaningful physical characteristics, we converted
the spatial frequencies to length scales, and identified structures
with these lengths that were found in both images. The results of
this comparison are shown in insets to Fig. 4(c).

5 Discussion
A major obstacle to the use of FSF to characterize imaging
planes, in which only intensity information is available, is
the difficulty in identifying self-similarity. It is not enough to
uniquely identify spatial frequencies within images, but we
must also be able to identify similarity within similar images.
The preparation of negative stain TEM requires isolation and
processing, which makes it impractical to use to identify the
presence of different phases of lipoprotein ordering in a
tumor, although optical imaging methods, which can be applied
in vivo, or directly to excised tissue samples, are not adequate
because all the relevant structures are below the diffraction limit
of visible light. The use of FSF analysis of laser speckle of opti-
cal microscopy has not yet been explored to find colloidal order-
ing in fluids by our method. A central feature of this type of
analysis is to identify the frequencies corresponding to charac-
teristic length scale of patterns within the specimen, as we have
shown here. Although it is trivial to distinguish between images
that we can see, the characteristic frequency spectrum is crucial
for a meaningful spatial analysis of laser speckle from structure
that we cannot see. The ongoing goal of this study is to compare
the results of the TEM image analysis and laser speckle data
from the same samples. Theory predicts that differences in

Fig. 4 Characteristic spatial frequency correlation of images of different samples. (a) and (b) show
enlarged regions of images used in the analysis. Each full image was taken under identical conditions,
of different samples. (c) The inner product of the power spectra of (a) and (b), T ½qðx; yÞ�2 in the text. Inset:
Features that are found in both images were identified with a size corresponding to the spatial frequency
peak indicated by the arrows, from left to right, spacing between SPION ∼85 nm, featureless patch
∼25 nm, repeating region of bilayers ∼22 nm, phospholipid ring around SPION ∼18 nm, and SPION
∼12 nm. Note the absence of signal at 20 μm−1 and 32 μm−1, which would correspond to the size
scale of a rouleaux ∼30 × 50 nm (dashed arrows and white box).
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the speckle pattern between samples will be related to structural
patterns just as we have shown here for static images.21

Recognizing that Newtonian fluid mechanics does not accu-
rately predict nanoparticle transport to cells, current research is
focusing increasingly on nanoparticle design in which response
to local conditions will change when the agent enters the tumor,
either passively, or by chemical, thermal, or photonic activa-
tion.22 Experimental strategies have also been proposed to
alter intra-tumor pressure by reducing plasma inflow, or increas-
ing lymphatic drainage; to change the effect of filtration or size
exclusion by chemically eliminating GAGs, or disrupting
collagen structures to increase lateral dispersion of agents.23,24

These current approaches all recognize that the role of TIF to
determine particle distribution is more important than has been
previously understood. In light of this, it is vital to develop new
methods to characterize the microstructure of the TIF.25 In addi-
tion therapies that target barriers to transport formed by shear
thickening and jamming will require sensitive tools such as
these to evaluate the efficacy of treatment.

6 Conclusion
The present method provides an elegant solution to the con-
founding image-specific frequencies found not only in optical
applications but for fields as diverse as functional MRI and com-
puter networking.26,27 By identifying similarities and differences
of heterogeneity in these images, we are setting the groundwork
to evaluate the microstructure of TIF, and for the evaluation of
ECM structure as well. The biological materials used in this
analysis are typical in the sense that they form random patterns
from a heterogeneous dispersion and show various degrees of
similarity at multiple length scales. The method described
herein, by providing insight into TIF microstructure, and the dis-
tribution of SPION within a principal colloidal component of
the TIF, has direct application in quantitative dosimetry of exog-
enous contrast agents, and can be extended to measure response
to therapy. Future work with this method will include an evalu-
ation of laser speckle fields from the HDL preparations as
above, and evaluation of nanoparticle distribution patterns in
tumor explants.

This research on FSF analysis of TEM images of rHDL and
SPION demonstrates the feasibility of recovering characteristic
features from an imaging plane of a random heterogeneous pat-
tern without direct reference to feature location. The knowledge
that this data can be generalized to a pattern class, and yet is
unique within a specific pattern, provides an opportunity to
explore the characteristic structures of subdiffraction limit mate-
rials, and to better understand their impact on the diagnosis and
treatment of cancer.

Appendix: Development of Stepwise
Averaging for Noise Correction
To implement this method, we divide an image into successively
smaller sub regions as shown in Fig. 2, and derive the FFT of
each region. The results of averaging the 384 subregions are
shown in Fig. 5, with a sharp strong peak at 71 μm−1, and
a broad lower peak at 364 μm−1. The resolving power of
the TEM used to acquire the images used in this study is
∼2 nm, corresponding to a feature size of 4.6 pixels for a detec-
tion threshold of 500 nm−1. This is confirmed by the fact
that the Fourier spectrum drops sharply in that range. As we
apply averaging to successively larger regions, we find lower

frequency peaks, but also less noise reduction. By this general
method, we successively identify the true spatial frequencies
within regions up to half the size of our largest field of view.
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