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Abstract. Retinal image quality assessment (IQA) is a crucial process for automated retinal image analysis
systems to obtain an accurate and successful diagnosis of retinal diseases. Consequently, the first step in
a good retinal image analysis system is measuring the quality of the input image. We present an approach
for finding medically suitable retinal images for retinal diagnosis. We used a three-class grading system that
consists of good, bad, and outlier classes. We created a retinal image quality dataset with a total of 216 con-
secutive images called the Diabetic Retinopathy Image Database. We identified the suitable images within the
good images for automatic retinal image analysis systems using a novel method. Subsequently, we evaluated
our retinal image suitability approach using the Digital Retinal Images for Vessel Extraction and Standard
Diabetic Retinopathy Database Calibration level 1 public datasets. The results were measured through the
F1 metric, which is a harmonic mean of precision and recall metrics. The highest F1 scores of the IQA
tests were 99.60%, 96.50%, and 85.00% for good, bad, and outlier classes, respectively. Additionally, the accu-
racy of our suitable image detection approach was 98.08%. Our approach can be integrated into any automatic
retinal analysis system with sufficient performance scores. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI:
10.1117/1.JB0.19.4.046006]
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1 Introduction

Medical imaging is an essential phase of automated medical
diagnosis and decision support systems. In particular, ophthal-
mologists use medical imaging systems to evaluate the retinal
diseases intensively.' Retinal imaging systems are based on fun-
dus images that are acquired using a predefined field-of-view
(FOV). However, some fundus images are of a medically unsat-
isfactory quality caused by insufficient contrast rate, blurring,
incorrect focus, and frame inputs. Automated systems are
unable to evaluate such images medically and cause ophthalmol-
ogists to waste precious time attempting to interpret the images
of poor quality. Hence, the image quality becomes a crucial
property of retinal images and must be assessed initially in a
retinal imaging system.

Studies on image quality assessment (IQA) can be catego-
rized into two groups: segmentation-based retinal IQA and
histogram-based retinal IQA. The goal of segmentation-based
IQA methods is to identify the high-quality images that have
more separable lesions and anatomical structures than the low-
quality images.? For instance, Fleming et al.® proposed a seg-
mentation-based IQA method based on the detection of the
capillary vessel structure in the macula, whereas Giancardo
et al.* measured the vessel distinctive in different retinal
image regions for IQA. Histogram-based IQA methods aim to
detect nonuniform gray level histograms of retinal images
because the gray level histograms of the low-quality images are
more skewed than the high-quality images. For example,
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Lalonde et al.’ used the gradient magnitude of image histograms
and local histogram information to grade image quality. Lee and
Wang® defined a quality index based on the convolution of a
high-quality image histogram and evaluated the image histo-
gram. Further, Niemeijer et al.” classified retinal image quality
into five classes using image structure clustering and the distri-
bution of image brightness.

Although each method obtains the great performance scores,
it is extremely difficult to compare the results of one method
with the results of another. The reason is that each method
might use different datasets or quality metrics to measure its per-
formance. Furthermore, there is no widely accepted retinal
image quality scale that exists in the literature. Additionally,
each method uses either segmentation of retinal structures or
retinal image histograms. Both approaches can increase the false
positive rate because the segmentation-based approaches can be
error-prone and histogram-based approaches discard spatial
information.”

In this paper, we present an approach for finding medically
suitable retinal images (MSRIs) that should contain the optic
disc (OD), the macula, and the vascular arch to identify the
exact position of lesions caused by any retinal disease on the
posterior pole. Our approach aims to combine the segmentation
method with global image information in order to eliminate the
drawbacks of segmentation-based image quality methods. In
other words, we propose a hybrid retinal IQA approach to detect
the ideal retinal images to be used for the retinal diagnostic
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process. In addition, we have developed a new public retinal IQA
dataset.

2 Materials and Methods

We require a retinal image quality dataset to measure the per-
formance of our IQA approach. Although several retinal imag-
ing datasets exist in the literature, we were required to create our
own retinal image quality dataset because of the lack of quality
information in the existing datasets. We created a new retinal
image dataset called Diabetic Retinopathy Image Database
(DRIMDB) in order to evaluate the performance of our retinal
image quality approach. DRIMDB has three image quality
classes: good, bad, and outlier. An expert annotated a total of
216 images into those quality classes. The total number of reti-
nal images in each quality class is listed in Table 1. DRIMDB is
publicly available at http://isbb.ktu.edu.tr/multimedia/drimdb.

All the images used in DRIMDB are obtained from the
Retina Department of Ophthalmology, Medical Faculty,
Karadeniz Technical University. Furthermore, all images were
obtained with a Canon CF-60UVi Fundus Camera using 60 deg
FOV and stored in JPEG files at 570 X 760 pixels resolution.

We designed our quality scale considering its simplicity and
efficiency. In particular, we included an outlier class to identify
the nonretinal images that could have been obtained for several
reasons, such as wrong focus or patient absence. Then, we di-
vided the images into two groups, which are good- and bad-qual-
ity images. It is important to note that retinal images with good
quality in DRIMDB are medically suitable image candidates.

We developed a two-step IQA approach to find MSRIs. The
first step of our approach aims to identify the good retinal
images, which are worthy of further analysis. The second step
of our approach identifies medically suitable images among the
goodquality retinal images. In the first step, we used DRIMDB
to measure the classification performance of our approach. In
addition, we used two additional public retinal image datasets
[Digital Retinal Images for Vessel Extraction (DRIVE) and
Standard Diabetic Retinopathy Database Calibration level 1
(DIARETDB1)®°] in our experiments to identify MSRISs.
Given that medical experts utilize these public datasets, we
assume that each image is a medically suitable image for our
experimental setups.

The details of our approach are shown in Fig. 1 and are
described in detail in the subsequent sections. Briefly, our
approach consists of six phases. Initially, we enhanced an image’s
visual information using image processing techniques to increase
the visibility of crucial anatomical structures. This was followed
by the feature extraction phase. Then, the image features were
classified using machine learning methods to grade retinal images
according to our quality scale. Finally, MSRIs were identified
within the images classified as being of good quality.

Table 1 Image distribution of DRIMDB.

Class name Total number of images
Good 125
Bad 69
Outlier 22
Total 216
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2.1 Preprocessing

The visibility and clarity of blood vessels play an important role
in assessing the retinal image quality. We applied image process-
ing techniques to retinal images in order to enhance the visibility
of blood vessels. Retinal images are generally stored in JPEG
files using the RGB color space. According to many works
in this area,' the green channel of the retinal images contains
the most valuable data because of its informative contrast rate.
Hence, we extracted the green channel of the retinal image ini-
tially [Fig. 2(a)]. We inverted the gray level values of the green
channel data to improve the visibility of blood vessels. Then, we
stretched the contrast of the inverted green channel image. Given
that the concavity of the posterior pole causes intensity varia-
tions in retinal images, we applied contrast-limited adaptive
histogram equalization (CLAHE)'! to adjust the intensity distri-
bution uniformity of the retinal image [Fig. 2(b)].

2.2 Segmentation of Retinal Blood Vessels

The preprocessing goal is to improve the visibility of blood ves-
sels in the segmentation process. We preferred to use Zana and
Klein’s vessel segmentation approach'? because of its simplicity
and robustness. The method has a high accuracy and efficiency

) v
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vessels

Localizing optic disk
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Detecting fovea region

!

Extracting features
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Assessing the retinal image quality with classifiers
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Finding suitable retinal image within good class
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Fig. 1 Block diagram of our approach.
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Fig. 2 Blood vessel segmentation phases: (a) original green channel retinal image, (b) applying contrast-
limited adaptive histogram equalization transform to inverse of green channel retinal image, (c) applying
the morphological methods, (d) binarization of (c) with a triangle automatic threshold method, (e) removal
of small region without vessels, and (f) overlaying the segmented vessels on the original green channel

retinal image.

on the vessel segmentation process in retinal images. In detail,
the method uses simple morphological operators to extract
blood vessels of a retinal image.

2.3 OD Detection

One of the most important steps of our approach is the OD
detection step because it plays an important role in both retinal
IQA and identification of MSRI processes.'>!* First, we used
the visibility of the OD to identify the goodquality images
because these images should contain the OD properly. After-
ward, we determined that the location of the OD should be
within a specific boundary in order to diagnose the retinal dis-
eases on the posterior pole.

The OD can be detected easily in a retinal image because of
its unique features, such as high-intensity value and circularity.
However, retinal images might contain such abnormalities that
could be extremely similar to the OD. A simple threshold seg-
mentation method might produce inaccurate results in this case.
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In our method, we used the vertical edge information to detect
the OD because the OD is the vertical junction of vessels in a
regular retinal image [Fig. 3(a)]. Therefore, it is expected that
there should be several vertical edges around the OD. We used
a vertical Sobel operator to extract the vertical edge information
of preprocessed retinal images [Fig. 3(b)]. We calculated the ver-
tical edge histogram using the following formula

VEH; = ) VI(i. j). (D
i=0

where VEH denotes vertical edge histogram, VI is the result of
the vertical Sobel operator, n denotes the total number of rows in
VI, and i and j denote the row and column numbers of the
image, respectively. The maximum value index of this histo-
gram is an approximation of the horizontal center of the location
of the OD. Therefore, we were able to reduce our OD search
area from the entire retinal image to a neighborhood of two
OD diameters of maximum value index. In other words, the

© | b ol ok

Fig. 3 Detecting candidate area of the optic disk: (a) original image, (b) vertical edge histogram, and
candidate optic disc (OD) region of the image.
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horizontal center of the OD should remain within [min,, max,],
where 0 < min, < max,, min, = argmax;{VEH;} —2 x r(OD),
and max, = argmax;{VEH;} + 2 x r(OD) [Fig. 3(b)].

Once the candidate region was determined, we extracted the
candidate region image from the green channel image and
adjusted the gray scale values of the target region [Figs. 4(a)
and 4(b)]. We used the Canny edge detection operator to
find edges in the target region [Fig. 4(c)]. Successively, we
used the Hough transform to find circles in the edge image
[Fig. 4(d)]. The Hough transform is an accumulation method
defined as

n m

> gl Xer yer 1), 0)

i=0 j=0

H(xc’yc’r) =

where (x., y.) is the center point of the circle being tested, r is
the radius of circle, n and m are the total number of rows and the
total number of columns of the edge image, respectively, and
g(i, j,xc, Yo, ) is a binary function defined as

)

. _ JIEIG )] P == x) + (=)
gl J. Xer Yeu 1) = { 1, otherwise

3

where EI(i, j) is the pixel value of the edge image at the (i, j)
point.!> We selected the maximum accumulator value of the
Hough transform as the OD.'® The result of our OD detection
approach is depicted in Fig. 4(e).

2.4 Fovea Detection

The fovea, which is the darkest part of a normal retinal image, is
located at the center of the macula. In a formal manner, the loca-
tion of the fovea remains within a ring between the two circles
that have the same center as the OD and that have the radius of
two and three OD diameters, respectively. 17 Hence, we created a
ring-shaped mask to locate the fovea that is depicted in Fig. 5(b).
We used morphological closing to eliminate the side effects of
retinal diseases and to increase the separability of the fovea. The
best approximation of the fovea center is the location of the
darkest point in the mask. Figure 5(c) shows the identified
fovea and its neighborhood in the mask. Finally, we were

Fig. 4 Optic disc detection steps: (a) candidate region image of OD,
(b) adjusted image, (c) edges of the region, (d) possible circles, and
(e) detected OD.
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(c)

Fig. 5 Fovea detection: (a) localized optic disc, (b) finding the candi-
date fovea area, (c) localization of fovea region, and (d) finding the
macula components.

able to locate the rest of the fovea components as shown in
Fig. 5(d).'

2.5 Feature Extraction for Retinal IQA

In this work, we extracted a total of 177 features from a retinal
image in order to determine the quality of an image. Our features
can be categorized into three groups: shape, texture, and
intensity.

Shape features aim to represent the shape information of a
segmented binary image. Given that we previously segmented
a retinal image, we can use the shape features of the segmented
image to express the vessel structure of the retina. We chose two
shape features: one is called the inferior, superior, nasal, and
temporal (ISNT) quadrant features'® and the other is the Zernike
moments,?’ which are expected to have high descriptive power.
Moreover, the ISNT quadrant features and the Zernike moments
describe the local and global properties of the vessel structure,
respectively.

Our goal is to identify the retinal images, as well as the non-
retinal images obtained from fundus cameras. It is obvious that
the texture of both types of images should be different from each
other. Hence, we used texture features to distinguish retinal
images from nonretinal images. Texture features model the
repeating patterns of a local pixel intensity variation in an
image. In this work, we used Haralick texture features, which
aim to describe the texture globally,?' and the edge histogram,
which expresses the texture locally.”

Finally, we used two color-related features to represent the
color information of the images. The first feature is concerned
with the pixel intensity distribution properties of a retinal image.
It is expected that the histogram distribution of the high quality
retinal image should be similar to a normal distribution. There-
fore, we calculated the high-order statistical properties of the
gray level histogram to represent the intensity distribution of
a retinal image. The second feature represents the dominant
color of the image in both the RGB and gray scale color spaces.

2.5.1 Regional features of ISNT quadrants

The ISNT quadrants features represent the vessel structure of a
retinal image in the four ISNT regions.'® The vessel information
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at each region is represented by shape descriptors. Hence, we
extracted localized shape properties of vessel distribution in a
retinal image with the help of these features.

After segmenting the blood vessels, we created four masks to
extract the ISNT regions. We calculated the area, major and
minor axis lengths, eccentricity, orientation, Euler number,
circle diameter, solidity, extent, and the perimeter properties
of each region. In addition, high-quality retinal images should
have a uniform vessel distribution among these quadrants.
Consequently, we calculated two additional features from the
ISNT quadrants, which are given in the following formulas:

Al
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Figure 6 shows a graphical representation of the ISNT
features.

2.5.2 Zernike moments

Zernike polynomials® are used to extract the global shape infor-
mation of an image. They provide robust shape information that
is invariant to rotation and scale. In mathematics, the Zernike
moments are orthogonal moments that use the unit vector rep-
resentation of an image. They are denoted as in the following
formula:

n+1
— D > & y)Vin(p.0). >0,
X y

|m| < n, (6)

Anm =

n — |m|is even,

Mask

Image

where | - | denotes the absolute value of a real number, p is the
length of the vector from the origin to point (x, y), 0 is the angle
from the x-axis to the vector, and A}, = A, _,,. Here, V3, (p,0)
are the Zernike polynomials and are denoted as in the following

formula:

Vim (,0, 9) =R, (p)ejmé)’ @)

where

n=|m

2 (n—s)!

an(p) :Z(_l)s m| _|m| P
= s!(%-s)z(%-s)!

l’l—2S. (8)

We used the first 15 Zernike polynomials to assess the global
quality of retinal images in this work because they provide
higher accuracy rates for shape-based classification tasks.

2.5.3 Gray level co-occurrence matrix features

The features of the gray level co-occurrence matrix (GLCM)
were proposed by Haralick et al.?! It is intensively used in
many texture-related studies. These features describe the texture
using spatial intensity dependencies. In the original work, tex-
ture was defined by calculating the statistical properties of
GLCM that represent intensity value co-occurrences at d-dis-
tance and 6 angle. As a result, GLCM is a square matrix
whose rows and columns represent gray level intensity values.
In other words, the size of the GLCM matrix depends on the
number of gray levels in the image. The GLCM matrix is cal-
culated using the following formula:

CAx,A)'(i’j) = zm: Z

p=1 g=1
{1, I(p,q)=iandI(p+ Ax,g+ Ay)=j
X ,
0, otherwise

©

where I(x, y) is the image function, m and n are the image width
and height, and Ax and Ay are the distance parameters defined
by d and 0, respectively.

After calculating the co-occurrence matrix, each element of
the matrix is normalized using the following formula to create a
normalized co-occurrence matrix [p(i, j)]

Fig. 6 Masks and images of ISNT quadrants: (a) inferior quadrant mask, (b) superior quadrant mask,
(c) nasal quadrant mask, (d) temporal quadrant mask, (e) inferior vessel information, (f) superior vessel
information, (g) nasal vessel information, and (h) temporal vessel information.
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Fig. 7 Filters used to determine edges (a) horizontal edge filter, (b) vertical edge filter, (c) 45-deg edge
filter, (d) 135-deg edge filter, and (e) nondirectional edge filter.

C(i. Jj)
o1 i Ce D)

where L denotes the number of gray levels in the image and
p(i, j), which is also denoted as p;;, is the (i, j)’th element
of the normalized co-occurrence matrix.

We used seven Haralick feature functions: contrast, correla-
tion, sum of average, entropy, homogeneity, inverse difference
moment, and maximum probability; they are computed at 0, 45,
90, and 135 deg angles for distance value one.

p(i,j) = (10)

2.5.4 Edge histogram descriptor

Edge information in an image can describe both shape and tex-
ture. We used the edge histogram descriptor, which is an element
of the MPEG-7 standard, to extract the primitive information of
the edge distribution.”>** First, the retinal image was divided
into 16 (4 x4) subimages. A histogram of five standardized
edge directions, shown in Fig. 7, was computed for each
subimage.

The edge histogram was calculated using the edge filter
responses at each 2 X2 nonoverlapping blocks of each sub-
image. A block was assigned to the edge whenever the filter
response was a maximum value. Hence, the number of elements
in the edge histogram feature is 80 (the union of five bin histo-
grams of each 16 subimage).

2.6 Finding a Suitable Retinal Image

In this paper, we propose a method to determine MSRIs that
include the OD, fovea, and superior and inferior arcades.
MSRIs provide valuable information about the retina and are
preferred by ophthalmologists. We call a retinal image an MSRI
when it has both the OD and the fovea at a specific location

Superior arcade

central line 6‘ g

A\

Inferior arcade

called the expected region of OD (EROD). An example of
EROD is depicted in Fig. 8.

The EROD upper and lower bounds are calculated using the
following formulas:

Lgrop = ye + r(OD), (11)

Ugrop = Y. — r(OD), (12)

where y, is vertical centerline of the retinal image, r(OD) is the
diameter of the OD, and Lgrop and Ugrpp denote the lower and
upper bounds of EROD, respectively. We called an image MSRI
if it has both the OD and the fovea within EROD. Furthermore,
we defined a new suitability metric (S) for retinal images, which
is calculated using the following formula:

S = |ye = Yol (13)
where ygp is the y component of the OD position. Hence, our
metric decreases when the center of the OD approaches the
image’s centerline.

2.7 Performance Measurement of Retinal IQA

We implemented our feature extraction code using the
MATLAB software. We executed the DRIMDB feature extrac-
tion on two different computer configurations (PC1 and PC2).
PC1 has Intel Core i7 3770 quad-core CPU with 16 GB of
RAM, and PC2 has Intel Core i7 3930K six-core CPU with
16 GB of RAM. We repeated feature extraction experiments
10 times to eliminate the cache effect using serial and parallel
implementations. Moreover, we calculated the speed-up and
efficiency scores for parallel implementation of the feature

22.06.2004 10:09

Fig. 8 Examples of EROD (a) optimal boundaries for EROD (b) an example of retinal image having OD

and fovea in EROD.
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Table 2 Time analysis for feature extraction of images in DRIMDB.

Table 3 Time comparison of feature selection methods.

PCA PC2
Serial implementation 385.83 s 304.32 s
Parallel implementation 145.60 s 56.51 s
Speed-up 265.00% 538.49%
Efficiency 33.12% 44.87%

extraction process. The results of our experiments are listed in
Table 2.

In this study, we measured the classification performance of
the features described in Sec. 2.5 on the IQA task with the help
of a data mining software.” In addition, we conducted experi-
ments to identify the best machine classifier for the retinal QA
task among five well-known machine classifiers: the linear dis-
criminant analyze (LDA) with principal component analysis
(PCA),*?" the k-Nearest Neighbor®® (k-NN), the Neural
Network (NN),?° the Naive Bayes,® and the support vector
machines (SVMs).>! Some of these classifiers require parame-
ters to be adjusted. We tested several parameter configurations to
find the optimum parameter values. Furthermore, we used 10-
fold cross-validation to ensure the objectivity of each
experiment.

We used PCA to manage the singularity problem of the LDA
classifier. However, we had to adjust the PCA component count
of the LDA+PCA classifier. Our experiments showed that the
optimum parameter value of the PCA component count is
77. 1t is also noticeable that the best k value for the k-NN clas-
sifier is found at one. We used one hidden layer for the NN clas-
sifier and calculated the hidden layer size using the input vector
length and class count. We used Laplace correction to prevent
the high influence of zero probabilities on Naive Bayes experi-
ments. The SVM classifier was the only binary classfier in our
experiments. We used one-versus-all approach on experiments
related with the SVM classifier, and our experiments show that
the best C value for the SVM classifier is —1.0.

All our initial tests were performed on the combined vector
of all the features explained in this paper. Classification perfor-
mance can be degraded by feature vector dimension. This neg-
ative effect is known as the “curse of dimensionality.” There are
two common methods to overcome this issue: selecting the most
valuable features from the original subset and transforming the
feature space into an effective low-dimensional one. These two
methods are called feature selection and dimensionality reduc-
tion, respectively. Because we are considering a vector whose
size is 177, we must ensure that our experiments are not affected
by the curse of dimensionality side effect. We performed two
feature selection approaches: a genetic algorithm® and a for-
ward selection®® method. All the experiments were executed
on PC1. The time comparison of the methods is listed in Table 3.

Most of the classification-related studies are concerned with
assessing samples in two distinct classes called the binary clas-
sification systems. There are state-of-the-art evaluation metrics
available in the literature to measure the performance of binary
classification systems, such as receiver operating characteristics
analysis, sensitivity, and specificity. However, our task requires
evaluation metrics capable of measuring the performance of
multiclass classifications. The most preferred metrics used for

Journal of Biomedical Optics

Genetic algorithm Forward selection

Feature Feature
3 All features  vector ~ Test  vector  Test

Classifier testtime (s)  size time(s) size time(s)
LDA <1 85 <1 8 <1
k-NN (k = 1) <1 177 <1 6 <1
Neural <1 98 <1 4 <1
network

Bayes <1 84 <1 4 <1
SVM <2 95 <1 10 <1

this task are precision and recall. Precision determines the
rate of correctly predicted samples among classification results
and recall determines the rate of correctly classified samples
among actual samples (in some studies, recall is referred to
as sensitivity).34 However, these two metrics can show different
characteristics in some experiments. Therefore, we chose the F1
measure, which is the harmonic mean of precision and recall, to
measure the performance of our experiments.>* As a result, we
are able to identify the experimental setups obtaining high clas-
sification accuracy, as well as high predictive power. The formal
definition of the F1 metrics is given in the following formula:

Fl—2 Prec.is.ion * Recall ' (14)
Precision + Recall

3 Results

Our initial experimental results are presented in Fig. 9.
According to the results, the SVM classifier slightly outper-
formed other classifiers at experiments on good and outlier
classes with 99.60% and 84.21% F1 scores, respectively,
whereas the LDA classifier outperformed other classifiers at
experiments on the bad class with 97.78% F1 score. Although

Initial performance results

100% —
80% — - - =
Y 60% - N - -
2 —
o
2
B 40% 1 — —
20% — — —
0, — | — Ll
0% Good Bad Outlier
ELDA 96,90% 97,78% 82.05%
Ok-NN 80,88% 64,06% 56,25%
B Neural net 99,21% 94,12% 81,82%
mNaive Bayes 99,21% 93,94% 79.17%
OSVM 99,60% 96,50% 84,21%
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Fig. 9 Results of initial experiments.
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Genetic algorithm performance results

100%

80% ] —
W 60% — — ] =
£
2
= 40% — I -
20% — 1 —
ly — — | —
0% Good Bad Outlier
BLDA 97.28% 94,03% 78,05%
Ok-NN 80,30% 66,17% 62,86%
@ Neural net 98,40% 95,04% 78,05%
W Naive Bayes 99,21% 94,74% 80,85%
oSVM 98,04% 91,55% 62,86%

Fig. 10 Results of genetic feature selection experiments.

two different classifiers presented different characteristics on
different classes, we suggest the use of the SVM classifier
because of its overall classification success rate.

Furthermore, we tested the performance effect of the dimen-
sionality reduction approaches on the IQA task. Figures 10
and 11 depict the classification results of the genetic and forward
feature selection approaches, respectively. According to the
results, the feature selection methods increase the success
rates of probabilistic classifiers. For example, the classification
performance of the Naive Bayes classifier increases with the
help of the feature selection, as does the LDA classifier. It is
also noticeable that the performance of the k-NN classifier
increases considerably using the forward selection approach.
However, the performance of some classifiers degraded for spe-
cific classes, according to our results. In particular, the classi-
fication performance of the experiments on the outlier class
had the worst performance scores at feature selection tests of
the SVM and NN classifiers. The main cause of this issue is
closely related to the number of samples that belong to the out-
lier class because it has the smallest sample size compared to the

Forward selection performance results
100% —

other quality classes. Reducing the dimension might remove
information, which is crucial for outlier detection. In addition,
the feature selection approach increased the overall performance
rates of the LDA classifier noticeably among other classifiers.
The classification performance of the LDA classifier measured
at 98.81%, 96.40%, and 85.00% for the good, bad, and outlier
classes, respectively. Although individual classification perfor-
mances of classifiers varied with the quality classes, the SVM
classifier obtained the optimum classification performance
scores without any feature selection method considering the
overall classification performances.

Moreover, we performed additional tests to determine
whether the image fits our MSRI condition. Hence, after assess-
ing the quality of an image, we performed further experiments to
measure the performance of our MSRI detection approach on
DRIMDB, DRIVE, and DIARETDBI and obtained 97.60%,
100.0%, and 96.63% of detection rates, respectively. The per-
formance scores of our approach are listed in Table 4.

Figure 12 shows the successful and failed sample images for
DRIMDB and DIARETDBI, respectively. Each image includes
red dots that represent our OD and fovea detection results.
Moreover, the EROD boundaries are presented in each
image with red lines. Given that our approach depends on an
accurate OD position, any image transformation related to the
OD position will have a negative impact on our results. For
example, the image frame of the DRIMDB failed sample
includes an incomplete OD. Hence, our approach found the OD
location incorrectly. In addition, our approach was unable to find
fovea. Furthermore, the DIARETDBI1 failed sample has
extremely unbalanced spatial intensity distribution. So, our
approach only found the location of the OD correctly. Besides,
our approach could successfully find the exact location of the
OD and fovea on the images given in Figs. 12(a) and 12(c).

Our approach requires good-quality retinal images to detect
the fovea. We inspected each image in the DRIMDB for their
qualities. However, we used each image in the DIARETDB1
directly in our MSRI detection approach. Because the
DIARETDBI has no quality information, our approach fails
to detect the exact location of the fovea in images in the
DIARETDBI1 where there is an insufficient contrast rate.

4 Discussion

The most important anatomical structures of the retina are the
vessels, OD, macula, and vascular arches. MSRIs should con-

] _ = tain all the important retinal structures as much as possible and
should ensure that those structures are as clear as possible.
80% - - Successful retinal diagnosis depends on the clarity of the retinal
structures. However, the clarity of the retinal image is insuffi-
v 60% | | cient without a proper image frame. In this paper, we presented
2 a novel approach to identifying the retinal images with a good
Q
v
T 40% — —
Table 4 Performance scores of MSRI detection approach.
20% — |
Total number True MSRI
0% —Good — Bad ~Outlier Total number of correctly detection
SiDA 98.81% 96.40% 85.00% Databases of MSRIs classifier MSRIs rate (%)
Bk-NN 98,01% 93,43% 71,21% DRIMDB 125 122 97.60
B Neural net 98,40% 95,04% 78,05%
mNaive Bayes 99,60% 95,65% 84,44%
OSVM 99.21% 95,04% 76,92% DRIVE 40 40 100.00
i . . DIARETDBH1 89 86 96.63
Fig. 11 Results of forward selection experiments.
Journal of Biomedical Optics 046006-8 April 2014 « Vol. 19(4)



Sevik et al.: Identification of suitable fundus images using automated quality assessment methods

Successful sample Failed sample

DRIMDB

DIARETDB1

Fig. 12 Successful and failed samples from DRIMDB and
DIARETDB1 (a) DRIMDB successful sample, (b) DRIMDB failed
sample, (c) DIARETDB1 successful sample, and (d) DIARETDB1
failed sample.

clarity and a proper frame. Hence, automatic retinal image
analysis systems can acquire high accuracy rates using these
images.

In fact, several retinal images acquired in clinical systems
have insufficient information to diagnose the retinal diseases.
These images are useless for automated image analysis systems
and occupy redundant disc space. This issue can be resolved by
assessing the image quality with the help of automated IQA
approaches, before such images are saved into automatic retinal
image analysis systems. Therefore, the valuable time of ophthal-
mologists can be saved by eliminating the inadequate retinal
images. In other words, IQA will improve both the quality
and the time efficiency of the retinal image diagnostic process.

Most of the current studies measure the retinal image quality
with the help of vessel densities or intensity variations.>”
Additionally, some studies discard nonretinal image identifica-
tion and are concerned only with retinal image quality. However,
nonretinal images can have a negative impact on automatic reti-
nal analysis systems and increase the rate of false positives. For
instance, Fleming et al.* and Paulus et al.” discarded outlier
images and categorized retinal image quality. Paulus et al.? used
Haralick et al.?! texture features and reported 92.7% of an area
under curve (AUC) rate. Wen et al.* proposed an IQA approach
using blood vessel information. However, they ignored the con-
trast and color saturation knowledge of retinal images. Fleming
et al.> proposed a complex metric table for IQA. Although they
presented more quality classes than we do in this paper, Fleming
et al.® propose one bad class and more than one good classes. In
other words, there is no outlier class that contains nonretinal
images in their grading system. On the other hand, some
works attempt to detect nonretinal images. For instance,
Giancardo et al.* include the outlier images in their study,
but the success rate of their outlier detection is 80%, caused
by detecting false vessel-like structures in the outlier images.
Moreover, some retinal images were labeled as outlier because
of their insufficient diagnostic data. Lalonde et al.’ propose an
outlier detection system based on local pixel intensity distribu-
tion. The approach is open to errors for images that possess sim-
ilar intensity distributions. In our paper, we proposed a two-
phased MSRI detection approach. First, we graded the quality

Journal of Biomedical Optics

046006-9

of retinal images; then, we identified MSRI images among
good-quality images. Our approach provides a better identifica-
tion scheme for images that can be used in the retinal diagnostic
process.

There are several reports on the success rates of visual fea-
tures for different medical imaging systems in the literature.’
However, our current works on retinal imaging generally
involve new features instead of existing ones.>*!® Specific vis-
ual features for problems are thought to be more efficient,
although the existing features have high success rates for differ-
ent applications.”” Moreover, the existing features can be
integrated easily into any visual analysis system. Hence, the per-
formance evaluation of the existing visual features will provide
more valuable information for the literature. Another aspect of
our work is to find the most suitable visual features for the reti-
nal IQA task. In addition, we proposed two novel simple and
robust features for measuring the accuracy of the image
frame. We selected our visual feature to represent both local
and global properties of the retinal images in terms of texture
and shape. In other words, we analyzed the shape and texture
information of retinal images at the local and global scales.
Finally, we presented our experimental results, and our feature-
set obtained extremely high accuracy rates.

In this work, we proposed a new MSRI metric, which is
exceedingly simple and robust. According to the experimental
results, our MSRI metric obtained at least a 96% true detection
rate. Hence, our approach identifies the MSRI images with high
sensitivity scores.

Our approach can be integrated into any retinal image diag-
nostic system easily. Furthermore, our approach can increase
both the efficiency and accuracy of the retinal image diagnostic
process. In conclusion, we can say that the robustness of auto-
matic retinal image analysis systems can increase with the help
of our approach.
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