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Abstract. Patients with idiopathic fibrosis (IPF) have poor long-term survival as there are limited diagnostic/
prognostic tools or successful therapies. Remodeling of the extracellular matrix (ECM) has been implicated
in IPF progression; however, the structural consequences on the collagen architecture have not received
considerable attention. Here, we demonstrate that second harmonic generation (SHG) and multiphoton fluores-
cence microscopy can quantitatively differentiate normal and IPF human tissues. For SHG analysis, we devel-
oped a classifier based on wavelet transforms, principle component analysis, and a K-nearest-neighbor
algorithm to classify the specific alterations of the collagen structure observed in IPF tissues. The resulting
ROC curves obtained by varying the numbers of principal components and nearest neighbors yielded accura-
cies of >95%. In contrast, simpler metrics based on SHG intensity and collagen coverage in the image provided
little or no discrimination. We also characterized the change in the elastin/collagen balance by simultaneously
measuring the elastin autofluorescence and SHG intensities and found that the IPF tissues were less elastic
relative to collagen. This is consistent with known mechanical consequences of the disease. Understanding
ECM remodeling in IPF via nonlinear optical microscopy may enhance our ability to differentiate patients
with rapid and slow progression and, thus, provide better prognostic information. © The Authors. Published by SPIE
under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of
the original publication, including its DOI. [DOI: 10.1117/1.JBO.19.8.086014]
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1 Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung
disease with unknown pathological etiology. It accounts for
34,000 deaths in the United States each year and the daily
lives of thousands more are affected by its symptoms, including
dyspnea, daily cough, limited exercise capacity, and fear of
shortness of breath. Generally, the prognosis of IPF patients is
poor in the aggregate with a median survival of three to four
years postdiagnosis, whereas a lower percentage of patients
(10 to 15%) live five or more years, highlighting the hetero-
geneity of disease progression.'? Prognosis is poor due to both
the lack of effective therapeutic options and also due to limited
knowledge of the disease pathology and underlying molecular
and temporal changes associated with disease progression.
Currently, IPF is thought to be due to alveolar injury leading
to focal activation and proliferation of fibroblasts accompanied
with mild inflammation followed by the accumulation of new
extracellular matrix (ECM) and its subsequent destruction.’
Areas of dense collagen accumulation (old scar) are juxtaposed
with fibroblastic foci (new scar formation). Collagen I and other

minor isoforms (type III, V) are the primary components of the
new abnormal matrix,* where the balance changes during pro-
gression. For example, previous studies have found that collagen
III is characteristic of early IPF, whereas collagen I dominates
in late-stage disease.*”* Changes in elastin also contribute to
the ECM remodeling, where the proportion of collagen/elastin
determines the elastic recoil of the lungs and airway patency.”!°
Elastin in normal alveolar septa is found as an organized
epithelial layer of mature elastin fibers providing the elasticity
required for proper lung function; however, in early IPF, these
fibers are degraded by MMP-9 and elastase that are released
from the inflammatory cells and compromise lung patency.
As IPF progresses and elastin is degraded, fibroblasts respond
through synthesis not only of collagen but also elastin; however,
the new elastin is highly disordered and results in poor mechani-
cal properties of the new lung matrix.>'°

High-resolution computed tomography (HRCT) scans can be
used to diagnose IPF when a classic radiographic pattern is
present;'! however, in many cases, the appearance may not
be sufficient to establish a positive diagnosis. In these cases,
the gold-standard for IPF diagnosis still remains surgical biopsy
followed by pathology. However, this surgery procedure carries
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significant morbidity due to typical IPF patient characteristics
[i.e., older patient population, and often with multiple medical
ailments (diabetes, heart disease, etc.)] along with the risk of
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worsening of the disease in the postoperative period.'>!> Despite
the diagnostic utility of HRCT, the resolution is not sufficient to
probe the remodeling of collagen and elastin components of
the matrix, further limiting its ability to understand the disease
pathology.

Nonlinear microscopy techniques, including second har-
monic generation (SHG) and two-photon excited fluorescence
(TPEF), are attractive solutions to this problem as they are
able to probe the collagen and elastin, respectively, of the matrix
in a label-free manner. Here, we posit that their combined use
may contribute to enhanced diagnosis/prognosis of IPF and also
further the understanding of the disease etiology and progres-
sion. SHG directly probes the structure of collagen and has
been used to describe ECM alterations in several diseases,
such as cancers, fibroses, and connective tissue disorders. >
Multiphoton microscopy of elastin has also been used for
several applications, including imaging skin and cardiovascular
tissues, often in conjunction with SHG and coherent anti-Stokes
Raman scattering.”**° SHG and TPEF microscopy has not yet
been used extensively for lung tissues and has been limited to
mouse models. For example, Abraham and Hogg®! and Pena
et al.>? both have used SHG and TPEF to study the remodeling
in the lung matrix in chronic obstructive pulmonary disease
(COPD) and a bleomycin-mouse model of IPF, respectively.
Both these studies were successful in differentiating diseased-
remodeled lungs from normal lungs using a pixel-based measure
of collagen coverage and a voxel ratio of the collagen/elastin
balance. However, additional structural information is encoded
within the collagen SHG signal that was not utilized. For exam-
ple, the fiber pattern observed in the SHG images in normal and
IPF tissues can be used as a machine learning classification
system, enabling the collagen fibrillar pattern to be used as
a label-free biomarker for IPF. This is important as, surprisingly,
the fibrotic changes in the IPF matrix are considerably less
characterized than the cellular aspects.

In this study, we take a step in this direction by using a com-
bination of wavelet transform, principle component analysis
(PCA), and K-nearest-neighbor algorithm (KNN) to more spe-
cifically probe the alterations of the collagen structure observed
by SHG in IPF diseased tissues from normal lung ECM archi-
tecture. The wavelet/PCA/KNN classifier algorithm is able to
accurately delineate normal from IPF diseased lung tissues,
potentially ushering in a noninvasive clinical technique to
probe the remodeling of the ECM in this disease. We also
characterized the change in elastin/collagen balance as an
additional biomarker and found that the optical method is
consistent with the mechanical consequences of IPF on breath-
ing. Understanding the remodeling process may enhance our
ability to differentiate patients who will have rapid progression
from those with slow progression and, thus, provide patients
with a better prognosis.

2 Materials and Methods

2.1 Tissues

All lung tissues were obtained from lung transplant recipients
at UW Hospital Madison, Wisconsin, under a current IRB
approved protocol. The normal tissues were from pathologist-
defined normal adjacent tissue from biopsies of patients without
fibrotic lung disease. Tissues were fixed in formalin and sectioned
using a vibratome (Leica VT1200) to ~150 um thickness. After
sectioning, the tissues were stored in phosphate buffered saline
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(PBS) at 4°C until they were imaged. During imaging, they were
mounted on glass slides in PBS with #1.5 coverslips and
Vaseline to seal the slide while imaging. A total of six normal
and three IPF independent patient samples were prepared and
imaged.

2.2 Microscope System

The imaging system has been described in detail elsewhere™
and is only described briefly here. The instrument is built around
an upright microscope stand (BX61, Olympus, Center Valley,
Pennsylvania) with a laser scanning unit (Fluoview 300;
Olympus) that is coupled to a mode-locked titanium sapphire
femtosecond laser (Mira; Coherent, Santa Barbara, California).
All imagings (SHG and TPEF) were performed with an excita-
tion wavelength of 890 nm and an average power of ~20 mW at
the specimen using a water immersion 40 X 0.8 NA objective.
This configuration resulted in lateral and axial resolutions of
~0.7 and 2.5 microns, respectively. Circular polarization at
the focus was used to equally probe all fiber orientations. The
microscope has two channels with identically calibrated detec-
tors (7421 GaAsP photon counting modules; Hamamatsu,
Hamamatsu, Japan). The two channels permitted simultaneous
collection of the SHG wavelength (445 nm) in the forward
channel using a 20-nm bandpass filter (Semrock, Lake Forest,
Illinois) and the elastin autofluorescence signal in the epifluor-
escence channel using a 22-nm bandpass filter (583 nm;
Semrock).

2.3 Wavelet/PCA/KNN Analysis

We used a wavelet transform to obtain texture features with PCA
and KNN analysis for our classification system.**® The wave-
let transform decomposition provides both spatial and frequency
domain information, which is intricately related to the scale and
orientation of the texture features we seek to characterize in the
image data. In this process, the wavelet function is placed on
a specific location on the image to determine the correlation
coefficients between this function and the local morphology.
At that location, the shape of the wavelet function is then
anisotropically scaled in two dimensions, which then captures
(through correlation) both the width and the orientation of
the fibers. This process is then translated to different regions
in the image and the local wavelet coefficients are calculated.
A pictorial diagram of the process going from raw single optical
sections to wavelet coefficients is shown in Fig. 1.

Since the study size of six IPF and three normal lungs is
small, working with the full set of wavelet coefficients
(which characterize the input image in terms of the chosen
wavelet basis, here the nine filter Daubechies basis) is problem-
atic. In particular, the number of wavelet coefficients one choo-
ses directly corresponds to the dimensionality of the statistical
inference problem that needs to be solved in downstream analy-
sis. If the dimensionality of this space is large, one invariably
needs to provide the model with a larger number of images
to make the inference well-posed. The solution to this problem
is to instead analyze the distribution of the wavelet coefficients
in terms of their projections on the principal components (PCs).
This corresponds to the axes that explain the maximum variance,
describing the full set of images with a low-dimensional repre-
sentation that is more amenable to traditional statistical analysis.

Once these PCs are obtained (via the covariance matrix
of the wavelet coefficient distribution), we set up a machine
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Fig. 1 Flow chart of wavelet/principal component analysis (PCA)/K-nearest-neighbor (KNN) algorithm,
beginning with the raw image data, calculating wavelet coefficients, and then performing classification
using KNN analysis of the extracted PCAs. DWT, discrete wavelet transform.

learning task, which constitutes two main steps. First, we use a
set of training images, where the class labels of the images are
known to learn the pattern that best distinguishes one group
from the other (in a space defined by treating the principal
axes as the basis). Second, this pattern is used to classify test
images whose class label is not known. For classification, we
use a simple KNN classifier, a nonparametric method that
works under the assumption that the class of each example is
similar to the class of its neighbors in the space of PCA axes
(see Fig. 1). In other words, for each test image, we consider
the majority of votes of its neighbors, which determines the
class label of the test image.

The images used in the analysis all came from three IPF and
six normal patient samples that were available to us. Each patient
sample had several imaging locations, providing different optical
stacks. Then 15 individual optical sections were selected from
the middle 60% from each optical stack. The middle regions
were chosen to avoid any edge effects where the surfaces can
be uneven, and also to avoid any effects of attenuation on the
signal intensity. As a result of the different numbers of normal
and diseased patient samples, there were 270 IPF and 495 normal
available optical sections for a total of 765 images. For the wave-
let/PCA/KNN analysis, the sample size of the normal and IPF
tissues were size-matched, where 270 of the 495 normal images
were randomly selected for a total of 540 images (i.e., 270 IPF
and 270 normal). PCA dimensions resulting from the wavelet
transform of 540 images were randomized and partitioned into
10 subgroups, each with 54 images for KNN classification and
cross-validation. Ten KNN cross-validation trials were run, in
which nine groups served as the training set and one group
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was the testing set; each subgroup served as the test group
once, as is common in cross-validation experiments. The
MATLAB® code is freely available upon request.

3 Results

3.1 SHG Imaging of Normal and IPF Large Airway
and Parenchymal Tissues

The ECM structures of normal and IPF lung display significant
visual morphology differences in both the large airway spaces
and parenchymal areas (Fig. 2). Figures 1(a) and 1(c) are rep-
resentative SHG optical sections of the collagen architecture sur-
rounding large airways of IPF and normal lungs, respectively.
Figures 2(b) and 2(d) are representative optical sections of
the collagen architecture of parenchymal areas of IPF and nor-
mal lungs, respectively. By visual inspection, the collagen in the
diseased lungs in both the large airway and parenchymal regions
is packed into denser regions than in the normal tissue. Images
at 10x magnification were also acquired and were not visually
different than smaller fields of view.

For translational purposes, we need to develop objective
quantitative methods. The simplest approach is to apply a
threshold and calculate the average pixel intensity and collagen
area covered, as has been previously reported.?® The threshold
used to eliminate the background signal was determined by
measuring the background signal in 15 different locations per
image stack and finding the average plus the standard deviation.
The applied threshold level was specific to each optical section
within the image stack and was determined at each optical
section to account for signal attenuation at increasing depths.

August 2014 « Vol. 19(8)



Tilbury et al.: Second harmonic generation microscopy analysis of extracellular matrix changes. ..

Fig. 2 Panels are representative single second harmonic generation (SHG) optical sections of (a) large
airway of an idiopathic fibrosis (IPF) lung, (b) parenchymal region of IPF lung, (c) large airway of normal
lung, and (d) parenchymal region of normal lung. Field of view is 180 ym.

This approach showed that there were no statistical
differences in SHG intensity between either normal and IPF
parenchyma or large airway. The area covered was statistically
different between normal and IPF parenchyma (p = 0.008),
where the latter was higher, as might be expected for fibrosis.
However, there were no differences in coverage between normal
and IPF large airway.

3.2 Wavelet/PCA/KNN Classification of
SHG Normal and IPF Tissues

The largely insignificant results in the previous section demon-
strate the need for more in-depth quantitative image analysis
and classification. The wavelet transform uses the edges of
the collagen fibers to provide quantification of the qualitative
differences our eyes naturally detect, providing a robust means
independent of human visual biases for classifying tissues. The
wavelet/PCA/KNN classifier was developed (Sec. 2.3) for this
purpose, which reliably differentiates the diseased from normal
lung tissues. In this analysis, both large airway and parenchymal
regions of the lungs were combined for the classification.
Figure 3 shows plots of the receiver operator characteristic
(ROC) curves (true positive versus false positive) for the clas-
sification of IPF and normal lung tissues for a few combinations
of different PCA dimensions and KNN to demonstrate the
dependence on PCA and KNN parameters for the classification
of tissue. An area under the curve (AUC) of 1.0 is a perfect
classification, where 0.5 is a random outcome and provides no
discrimination. In practice, values >0.9 suggest excellent test
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accuracy in clinical applications. Table 1 lists the area under
the ROC curve for all the combinations of PCA dimensions
and KNN applied to classify the images.

The optimal classification was obtained using 20 PCA
dimensions and 5 NNs, with a resulting AUC of 0.998. The
accuracy of classification is similar using five NNs at all PCA
dimensions. As the number of NN is increased, the accuracy of
classification still remains high even at low PCA dimension, but
the accuracy increases as the PCA dimensions are increased,
noting that as more neighbors are included, the slight changes
between the higher-order PCA dimensions allow more accurate
classification. We found that all combinations of PCA dimen-
sions and KNN provided excellent classification since the worst
obtained accuracy was 94%. In general, it is desirable to use as
few PCA dimensions and NNs as possible to avoid overfitting
errors, and this is enabled here due to the significant change in
collagen fibrillar morphology.

3.3 Determination of Collagen/Elastin Balance in
Normal and IPF Tissues

Elastic fiber formation is also increased in IPF (Ref. 10) and the
elastin/collagen ratio may be impacted during disease progres-
sion (Ref. 9). Initially, in IPF patients, there is an increase in the
collagen deposition, but late-stage IPF is described as having an
increased presence of elastin. This balance is important in deter-
mining the mechanical properties of the lung matrix, such as
ECM stiffness and associated elastic recoil forces. We specifi-
cally probed both the collagen (SHG) and elastin (TPEF), where
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Fig. 3 Receiver operator characteristic curves for different com-
binations of PCA dimensions and KNN used to classify the normal
and IPF tissues: (a) varying the number of PCA dimensions from
5 to 300 while constraining KNN =5, (b) varying the number of
PCA dimensions from 5 to 300 while constraining KNN = 25, and
(c) varying the number of KNN from 5 to 15 while constraining
PCA dimensions to 100.
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Table 1 Area under the receiver operator characteristic curves for
combinations of principal component analysis (PCA) dimensions
and nearest neighbors.

Number of nearest neighbors

Number of PCA

dimensions 5 10 15 20 25

5 0.977 0.976 0.971 0.96 0.948
10 0.997 0.986 0.986 0.964 0.962
20 0.998 0.993 0.984 0.973 0.964
40 0.998 0.991 0.978 0.966 0.953
100 0.997 0.993 0.988 0.981 0.972
200 0.998 0.994 0.987 0.98 0.969
300 0.997 0.995 0.982 0.976 0.962

these contrasts were simultaneously excited at the same wave-
length (890 nm) and spectrally isolated in separate channels.
As the elastin contrast is linearly proportional to the concen-
tration, and SHG is a merged effect of the square of the colla-
gen concentration and its organization, it is not possible to
determine their actual molecular ratios. The collected signal
of both the collagen and elastin signals is further confounded
by the different scattering phenomena when imaging relatively
thick tissue samples. However, we analyzed the volumetric ratio
of elastin and collagen using the well-documented method:
[Ey — Cy]/|Ey + Cy], where E, and Cy represent elastin
and collagen voxel volumes, respectively,’!*” where the limiting
cases of this ratio of +1 and —1 correspond to all elastin or col-
lagen in the pixel, respectively.

Volume fraction estimates were completed on all imaging
stacks taken from the parenchyma of three normal and four
IPF patient samples. The TPEF spectrum of elastin is broad and
overlaps with other autofluorescence signals (e.g., cellular);
therefore, segmentation was required to spatially isolate the
elastin signal. The intensity of the autofluorescence cellular
components was much weaker than that of elastin, which allows
thresholding for successful spatial separation as seen in raw
[Fig. 4(a)] and segmented [Fig. 4(b)] images for normal, and
raw [Fig. 4(c)] and segmented [Fig. 4(d)] images of IPF tissues.
The threshold was set using the average signal intensity of the
cellular components for each stack, where all the pixels with
gray levels above the threshold value were summed to calculate
the volumetric fractional coverage of elastin. Similarly, the
background signal of the SHG images was eliminated, allowing
all the pixels with a signal above the threshold to be summed to
calculate the volumetric fractional coverage of collagen.

Two representative background-corrected color images of the
SHG (green) and elastin (blue) TPEF for normal and IPF tissues
are shown in Figs. 5(a) and 5(b), respectively, where the organi-
zation of the collagen and elastin are both dramatically different
in these cases. Specifically, the elastin in the normal tissues is
organized within the confines of collagen, whereas in the dis-
eased tissue, the elastin is disorganized and not exclusively
intermingled with the collagen fibers. The elastin/collagen
index derived from all parenchymal imaging stacks in normal
and IPF tissues is shown in Fig. 5(c), where the resulting ratios
were —0.48 and —0.63, respectively, where these values were
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Fig. 4 (a) and (c) are representative individual two-photon excited fluorescence optical sections of a
normal and IPF diseased lung, respectively. The triangular arrows delineate cells, and the arrow indi-
cates mucous, which both are removed via thresholding techniques. The corresponding resulting seg-

mented elastin images are shown in (b) and (d).

—
O
~

-0.34
p =0.07

-0.44

Collagen/Elastin Ratio Index

Normal

IPF

Fig. 5 Single optical sections of (a) normal and (b) IPF parenchyma, where blue and green is the two-
photon excited autofluorescence from elastin and SHG from collagen, respectively. Field of view is
180 um. (c) Averaged collagen/elastin ratio [E\, — Cy]/[Ey + Cy] of normal (-0.48) and IPF (—0.63)
parenchymal tissues where limiting values of 1 are indicative of all elastin and all collagen, respectively.
Normal and IPF parenchyma are statistically different (p = 0.07).

statistically significant at the p = 0.07 level using a student’s
paired ¢ test. The normal tissues were more elastic relative to
collagen than the diseased tissues, indicative of an altered
composition of the matrix. This finding, determined by optical
microscopy is consistent with known mechanical consequences
of the disease. We note that there was no discrimination of large
airways through this method.
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4 Discussion

The operative pathways in IPF and also the concomitant changes
in the ECM are poorly understood. However, the combination of
SHG and TPEF microscopy affords label-free, submicron res-
olution probes of the ECM changes. Specifically, this approach
may provide insights into the disease pathology and potentially
guide the development of more effective therapeutic treatments.
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Moreover, the methods could ultimately be integrated into
a scanning microendoscope.*®

The application of standard machine learning techniques
commonly used in computer vision has great potential as
image classification algorithms of optical microscopy data.
Simple image analysis techniques commonly used in optical
microscopy, such as FFT, are highly dependent on having
well-aligned structures within the imaging field of view, which
is rather infrequent in most biological tissues.>*™** Moreover,
FFTs provide a global rather than local analysis. As a result,
they have found their largest use in analyzing SHG images of
highly organized structures like tendon. Other transforms, such
as curvelets, have the capability of local analysis and alleviate
the limitations of FFT. For example, Keely and colleagues
successfully utilized a curvelet transform, a variant of a wave-
let transform, in the evaluation of the collagen fiber alignment
around tumor boundaries in various stages of breast cancer.*’
However, for the current case, we are interested in analyzing
the overall collagen in the image, where there is no specific
frame of reference such as a tumor boundary.

Texture analyses are superior in this regard, as they locally
probe slowly statistically, repetitive features that are present
within the image. The local analysis using the integrated wave-
lets/PCA/KNN approach affords the development of a tailored
classification scheme based on recurring patterns in known
images (although the PCAs do not correspond to visually iden-
tifiable features), which can then be used to classify unknown
images. This approach is powerful for the classification of over-
all sparse but locally dense collagen fibers found in both normal
and IPF diseased lung tissues. We could consider other texture
features as well. For example, a collagen-specific morphological
filter could have been designed, but this approach is time-inten-
sive and is not flexible in its application, i.e., it must be custom-
ized by trial and error for each application. For example, we
have used an implementation of texture analysis using textons**
in other work on ovarian cancer (submitted). This requires cre-
ating an extensive library of common features. Still, the textons
also do not correlate to specific features. In general, we note that
texture approaches have an inherent abstraction as they look at
slowly varying statistical patterns rather than tangible features,
such as fiber length and alignment. The advantage of this
approach is that wavelets are general signal processing tools
and are provided in the MATLAB® toolbox, where a great num-
ber of different functions are standard and can be tested to get
the optimal results.

While the patient numbers here were low, the classification
system had high accuracy (94 to 99%), based on the area under
the computed ROC curves. In contrast, simpler metrics of
intensity and area covered provided insufficient discrimination.
The robustness of this classification algorithm is preserved
across all combinations of PCA dimensions and KNN and is
a major strength of the approach. In contrast, simpler tech-
niques, such as the gray-level co-occurrence matrix classifica-
tion,” use only the brightness of adjacent pixels rather than
patterns and are not always applicable. Moreover, brightness
measurements can be misleading due to scattering, change in
concentration, and other unknown factors.

5 Conclusions

Quantifying and classifying images of biological tissues using
optical microscopy remains challenging. Therefore, develop-
ment of standard computer vision techniques, such as the current
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work, for nonlinear optical microscopy image classification is
highly beneficial to the community and will enhance our
own research findings. Specifically, in this particular study, it
has allowed excellent classification accuracy (>94%) of normal
and IPF diseased tissues, providing the initial step toward
the development of additional studies to probe the disease path-
ology. Additionally, combining the pattern analysis with the
collagen/elastin balance yields a more complete picture of the
alterations in the ECM in IPF. Given the robustness of this clas-
sification tool, it may be feasible in future studies with larger
patient numbers to separate data from large airway and paren-
chymal areas to determine if classification is possible based on
the remodeling of large airways alone, potentially allowing for
less-invasive imaging studies and diagnostic tools.
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