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Abstract. Optical coherence tomography (OCT) is an important interferometric diagnostic technique, which pro-
vides cross-sectional views of biological tissues’ subsurface microstructures. However, the imaging quality of
high-speed OCT is limited by the large speckle noise. To address this problem, we propose a multiframe algo-
rithmic method to denoise OCT volume. Mathematically, we build an optimization model which forces the tem-
porally registered frames to be low-rank and the gradient in each frame to be sparse, under the constraints from
logarithmic image formation and nonuniform noise variance. In addition, a convex optimization algorithm based
on the augmented Lagrangian method is derived to solve the above model. The results reveal that our approach
outperforms the other methods in terms of both speckle noise suppression and crucial detail preservation. © 2015
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1 Introduction
Optical coherence tomography (OCT), which dates back to
1991,1 provides cross-sectional views of biological tissues’ sub-
surface microstructures2,3 and has become a widely used diag-
nostic technique in the medical field due to its noninvasive
nature. For example, ophthalmology has benefited from OCT,
as it can image the retina and thus aid in the diagnosis.4

Different from common CCD imaging, OCT is an interferomet-
ric technique, and typically uses near-infrared laser light to
penetrate into the scattering medium before capturing the back-
scattered optical waves for the final imaging.5 With the develop-
ment of ultrahigh resolution OCT6 and Fourier-domain OCT,7,8

it is feasible to visualize biological tissues at a cellular level and
up to the depth of nearly 1 mm below the surface with high sen-
sitivity and image quality. Furthermore, the image acquisition
speed of OCT systems has greatly improved with the develop-
ment of high-speed sensors and tunable lasers with MHz scan-
ning rates, which allow real-time imaging of in vivo tissues.8

One of the important challenges limiting high-speed OCT’s
development is its unsatisfying image quality caused by speckle
noise. Due to the coherence of optical waves, speckle noise
arises under limited spatial-frequency bandwidth of the interfer-
ence signals.5 The generation mechanism of OCT determines
that the properties of speckle noise are related not only to the
laser source, but also to the tissue’s structural properties,9–11

and thus results in nonuniform speckle noise over the entire
image. Due to the significance of high precision in medical diag-
nosis, it is vital to remove speckle noise from OCT images for
image quality enhancement.

Much effort has been exerted for denoising OCT images, and
various approaches are reported. These methods mainly fall into
two categories, namely single-frame methods and multiframe

methods. Single-frame methods often assume a prior model
(either parametric or nonparametric) for the latent signal and
noise, and then remove the noise determinatively or probabilisti-
cally from the input single image. Filtering is a widely used
strategy, and there are many OCT denoising filters. For example,
Ozcan et al.12 apply various digital filters for denoising OCT
images, and the results indicate that the nonorthogonal wavelet
filter together with the enhanced Lee and the adaptive Wiener
filters can significantly reduce speckle noise. Based on the
wavelet filter, Yue et al.13 utilize the iterative edge enhancement
feature of nonlinear diffusion to improve the denoising results.
Similarly, Zhang et al.14 use the nonlinear diffusion in the
Laplacian pyramid domain to filter ultrasonic images. The
Kovesi Nw filtering technique and the Laplacian pyramid non-
linear diffusion technique are unified together in Ref. 15 to
remove both shot noise and speckle noise from OCT images.
In addition to the filtering techniques, there are also some
other approaches such as regularization and Bayesian inference.
The work in Ref. 16 uses a regularization method to minimize
the Csiszar’s I-divergence measurement, which would extrapo-
late additional details from the input noisy images to improve
the visual effects. Wong et al.17 and Cameron et al.18 use a sta-
tistic Bayesian least square model to reduce OCT speckle noise
in logarithmic space. Xie et al.19 take image contents into con-
sideration and propose a salient structure extraction algorithm
combined with an adaptive speckle suppression term to enhance
ultrasound images. Different from the above filtering or statistic
methods, based on sparse coding, the work in Ref. 20 learns an
overcomplete dictionary from high signal-to-noise ratio (SNR)
images and then utilizes this dictionary to reconstruct low-SNR
OCT images and achieve significant noise suppression. In all,
making use of the intrinsic redundancy within a single OCT
frame can help noise removal to a large extent.
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Benefiting from the development of high-speed OCT imag-
ing systems, the correlation between adjacent frames increases,
and researchers gradually begin to use multiple OCT frames to
attenuate speckle noise and propose various multiframe meth-
ods. Technically these methods could be further classified into
hardware methods and algorithmic methods. The general idea of
hardware methods is to change the parameters of OCT imaging
systems to decorrelate speckle noise in different frames, and
then compound these frames after image registration to get a
noise-free OCT image. For example, Refs. 10 and 21–23 alter
the angle of incident light while capturing different frames,24,25

change the detection angle of backreflected light,26 and change
the frequency of the laser beam. Using the dynamic focus OCT
facility, the work in Ref. 27 compares the performance of several
spatial compounding methods and shows their respective
pros and cons. The methods include median filtering, random
weighted averaging, and random pixel selection. The main dis-
advantage of these hardware methods is the complex procedure
of data acquisition, which would greatly increase the design
complexity of OCT imaging systems.18 In addition, the perfor-
mance of spatial compounding methods is not satisfactory.

There are several recently reported algorithmic methods for
denoising multiple OCT images that make use of the redun-
dancy of latent sharp OCT images in the frequency domain.
For example, the work in Ref. 28 performs the three-dimen-
sional (3-D) curvelet transform to the volume data, then thresh-
olds the coefficients, and finally does the inverse 3-D curvelet
transform to realize the noise removal. Under the same frame-
work, Mayer et al.4 choose the wavelet domain for coefficient
thresholding. In spite of the promising performance, these
denoising algorithms run the risk of losing crucial details by
directly truncating the coefficients.

Making use of both the intraframe and interframe redundan-
cies of OCT volume data, this paper proposes an algorithmic
multiframe optimization method to denoise OCT images.
Within each single frame, an OCT image is statistically similar

to a natural image and its pixel gradient map tends to be sparse.
This serves as the intraframe prior. To avoid piecewise constant
artifacts by simply using the total variation constraint, and con-
sidering the excellent detail-preservation performance of the
low-rank prior in matrix completion29,30 and image reconstruc-
tion,31,32 we make use of the interframe redundancy by register-
ing the OCT images along the image count dimension to form a
low-rank volume. Subjecting the images to both the image
formation model and the nonparametric bound constraint of
nonuniform speckle noise, we build a preliminary nonconvex
optimization model which jointly minimizes the rank of tempo-
rally registered OCT volume and forces the sparsity of its spatial
gradient. To solve the above model, we first perform some math-
ematical transformations and approximations for convexifica-
tion. Then, considering the superior convergence property of
the augmented Lagrange multiplier (ALM) method33 for solving
constrained optimization problems, as utilized in Ref. 34, we
derive a numeric algorithm based on the ALM method to solve
the convexified optimization model. Experiments on a pig eye,
human retina, and orange OCT data show that our denoising
technique could effectively reduce speckle noise while preserv-
ing rich details and that it exhibits superior performance to the
other popular methods.

The remainder of this paper is organized as follows: Sec. 2
sequentially describes the preprocessing operations—frame
registration, noise variance estimation, model construction, and
algorithm derivation. Then in Sec. 3, we apply our method to
real-captured OCT images including pig eye, human retina,
and orange data and compare our approach with several
other popular methods in terms of both visual quality and quan-
titative evaluation. Finally, we conclude this paper with some
conclusions and discussions in Sec. 4.

2 Method
In this section, we explain the whole operation framework of our
approach as diagramed in Fig. 1. Our method mainly includes

Iteratively solve the
model based on ALM
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Fig. 1 Framework of the proposed approach. After taking the logarithm, each OCT frame is represented
by a single column in log transformed space, and there is slight misalignment of one frame compared with
other frames, as log M shows. Then, by frame registration and noise variance estimation, we get not only
the optimization constraints, but also the optimization objective terms—the low rank of L and the sparsity
of∇L. Finally, the model is iteratively solved by a convex optimization algorithm based on the augmented
Lagrange multiplier (ALM) method, thus N is separated from L.
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three steps: (1) preprocessing step including pixel logarithm,
frame registration, and noise variance estimation, (2) modeling
step, and (3) solving step based on the ALMmethod. The imple-
mentation of each step is detailed in the following subsections.

2.1 Preprocessing

In this section, we conduct three preprocessing operations on the
captured OCT frames including pixel logarithm, frame registra-
tion, and noise variance estimation. Due to the interference
between the reference beam and the backscattering beam in
OCT facilities, the speckle noise in OCT images is multiplica-
tive5,9,10 and can be described as

MðsÞ ¼ LðsÞ × NðsÞ; (1)

whereMðsÞ denotes the captured value at location s, while LðsÞ
and NðsÞ, respectively, denote the ground truth and measure-
ment noise at the same location. To convert the correlation
between L and N from multiplication to addition, we take
the logarithm to both sides of Eq. (1) and get

log MðsÞ ¼ log LðsÞ þ log NðsÞ: (2)

In the following, we assume that all the variables have been
logarithmically transformed.

The second preprocessing operation is frame registration.
Although the OCT equipment usually has a high capture
speed, there always tends to be a slight misalignment among
OCT image sequences in vivo imaging due to the object motion
and other system factors.4 Here, we adopt the registration
method in Ref. 4, where a powell optimizer is utilized for min-
imizing the sum of squared distances among multiple registered
images. Specifically, the approach applies translations and rota-
tions to warp the pixels describing the same tissue position in
different frames to the same image coordinate.

The third requisite preprocessing operation is the variance
estimation of speckle noise. Considering the satisfying perfor-
mance of the median absolute deviation (MAD) method for
noise estimation,35 we here utilize the MAD method as
described in Ref. 18. Due to similar tissue properties and
light directions in the same neighborhood, we assume a uniform
noise variance for each pixel within a small patch. Therefore, the
MADwithin a small neighborhoodN of pixel s is first computed
in logarithmic space as18

σ̂ðs;NÞ ¼ 1.4826MNðsÞðj log MðsiÞ −MNðsÞðlog MÞjÞ;
(3)

where MNðsÞ denotes the median value over s’s neighborhood
NðsÞ, and si ∈ N is the i’th neighboring pixel of s. To make the
estimated deviation more precise, we choose a larger neighbor-
hood N2ðsÞ and calculate the local standard deviation σ̂ of its
subneighborhood N1ðsÞ. Then, we regard the mode of these
σ̂ as the preliminary noise deviation at position s:

σ̄ðsÞ ¼ modeN1ðsÞ∈N2ðsÞ½σ̂ðs;N1Þ�: (4)

Finally, to force the smoothness of noise variance among
adjacent pixels, we conduct a cubic spline fitting process to
amend σ̄ and get the final standard deviation estimation of
the OCT noise (the corresponding noise variance can be calcu-
lated as the square of the estimated standard deviation).

Empirical studies in Ref. 18 state that the noise estimation per-
forms best when the pixel numbers of N1 and N2 are 9 × 9 and
15 × 15, respectively.

2.2 Modeling

In this section, we build our optimization model incorporating
both of the interframe and intraframe priors. Suppose that there
are k frames in the OCT volume, and the pixel number of each
frame is m × n. We denote the temporally registered noisy OCT
images, their latent sharp version, and the measurement noise as
M, L, and N, respectively. Mathematically, the image formation
equation can be written as

M ¼ Lþ N: (5)

By representing each frame as a column vector, the dimen-
sions of M, L, and N are all ðm × nÞ × k. After frame registra-
tion, theoretically the entries in one specific row of L should be
exactly the same, as shown in Fig. 1. Therefore, we treat L as a
low-rank matrix and use the minimization of its nuclear norm
kLk�, which calculates the sum of L’s singular values34 as
the interframe prior constraint.

According to the statistical studies,36,37 the adjacent pixels in
natural images have similar intensities. Thus, the image gradient
centers around zero and follows a heavy tailed distribution, i.e.,
the gradient of natural images is sparse. Although captured via
a different imaging mechanism from the usual CCD imaging
methods, the OCT images still follow similar statistics, and
we impose the gradient sparsity of the latent OCT images as
the intraframe prior. Specifically, the l0-norm, which counts
the number of nonzero entries in a matrix, can model the sparse-
ness quite well, thus we can minimize k∇Lk0 as the intraframe
constraint, where ∇ is the gradient calculating operator.
Adopting the same representation in Ref. 38, here we use matrix
multiplication for the gradient calculation, namely k∇Lk0 ¼P

2
a¼1 kHaLk0, where H1 and H2 are, respectively, the horizon-

tal and vertical gradient operators and are defined as the diago-
nal matrices of corresponding high-pass filters h1 ¼ ½−1;1�
and h2 ¼ ½−1; 1�.

As mentioned before, speckle noise includes both the image
information and the zero-mean noise. Since what we are most
concerned with is the removal of the latter component, we treat
the first component as a part of the latent sharp image and con-
centrate on attenuating the zero-mean noise. According to the
three sigma rule, which indicates that nearly all (99.73%) of
the instances of a random variable lie within three times the stan-
dard deviation from its mean, we can approximatively formulate
the noise constraint as

jNj ≤ 3σ; (6)

where σ is the standard deviation matrix whose dimension is
ðm × nÞ × k. By introducing a non-negative matrix variable ε,
we can transform the above inequality into an equality as

N⊙N − 9σ⊙σ þ ε ¼ 0; (7)

in which ⊙ is the entry-wise product, i.e., for two matrices X
and Y, ðX⊙YÞij ¼ XijYij.

Based on the above notations, the optimization model for
denoising is defined as
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fL�;N�g ¼ argminkLk� þ λ
X2
a¼1

kHaLk0;

s:t: M ¼ Lþ N

N⊙N − 9σ⊙σ þ ε ¼ 0; (8)

with λ being a positive weighting parameter to balance different
objective regulation terms.

2.3 Solving the Model

In this section, we derive our optimization algorithm based on
the ALMmethod to solve the above model in Eq. (8). The model
is obviously nonconvex, so we first conduct several convexifi-
cation transformations to the model. As shown in Refs. 39 and
40, replacing the l0-norm with the l1-norm is one typical con-
vexification transformation. Here, we replace kHaLk0 with
kHaLk1, where k · k1 denotes the sum of the matrix entries’
absolute values. Further, it is hard to directly utilize the ALM
method to solve the convexified objective function due to its
high nonlinearity. To address this problem, we replace the var-
iables whose nuclear norm or l1-norm needs minimization with
two introduced auxiliary variables S1 and S2. In addition,
we pack

P
2
a¼1 kHaLk1 as kPLk1 for computation simplicity,

where P ¼ ½H1;H2�. With the above substitutions, we can
rewrite the model as

min: kS1k� þ λkS2k1;
s:t: G1 ¼ S1 − L;

G2 ¼ S2 − PL;

G3 ¼ M − Lþ N;

G4 ¼ N⊙N − 9σ⊙σ þ ε: (9)

Here, G1: : : 4 are supposed to be 0 in theory.
As stated before, we utilize the ALM method to solve the

above model. This method adopts an iterative optimization strat-
egy, and successively updates every variable within each itera-
tion. In the following, we derive the updating rules for each
variable. First, the augmented Lagrangian function of Eq. (9) is

f ¼ kS1k� þ λkS2k1 þ
X4
j¼1

�
hYj;Gji þ

θ

2
kGjk2F

�
; (10)

where h·; ·i denotes the inner product, Y defines the Lagrangian
multipliers (in matrix form), and k · kF refers to the Frobenius
norm that calculates the root of all the square entries’ sum in a
matrix. Here, θ is a penalty parameter balancing the four equa-
tion constraints in Eq. (9) and follows the standard ALM updat-
ing rule as θðkþ1Þ ¼ minðρθðkÞ; θmaxÞ, where ρ and θmax are both
user-defined parameters and k indexes the iteration. The updat-
ing rules of the other variables including S, L, N, ε, and Y are
derived as follows.

Optimize S. By removing all the items irrelevant to S1 in f,
we can get

fðS1Þ ¼ kS1k� þ
θ

2
kS1 − ðLðkÞ − θ−1YðkÞ

1 Þk2F:

According to the ALM algorithm, we can get the updating
rule of S1 as

Sðkþ1Þ
1 ¼ Usθ−1ðStempÞVT; (11)

where UStempVT is the singular value decomposition (SVD) of

LðkÞ − θ−1YðkÞ
1 , and

sθ−1ðxÞ ¼
( x − θ−1; x > θ−1

xþ θ−1; x < −θ−1
0; others

:

Similarly, keeping only the items related to S2 in f yields

fðS2Þ ¼ λ

�
kS2k1 þ

θ

2λ
kS2 − ðPLðkÞ − θ−1YðkÞ

2 Þk2F
�
;

and we can get the updating rule of S2 as

Sðkþ1Þ
2 ¼ sλ

θ
ðPLðkÞ − θ−1YðkÞ

2 Þ: (12)

Optimize L and N. By keeping only the items related to L, f
is simplified as

fðLÞ ¼ θ

2
kS1 − Lþ θ−1Y1k2F þ θ

2
kS2 − PLþ θ−1Y2k2F

þ θ

2
kM − L − Nþ θ−1Y3k2F;

and the partial derivative of fðLÞ with respect to L is

∂fðLÞ
∂L

¼ θðL − SðkÞ1 − θ−1YðkÞ
1 Þ

þ θ½PTPL − PTðSðkÞ2 þ θ−1YðkÞ
2 Þ�

þ θðL −Mþ NðkÞ − θ−1YðkÞ
3 Þ:

Similarly, the partial derivative of fðNÞ with respect to N is

∂fðNÞ
∂N

¼ θðN −Mþ LðkÞ − θ−1YðkÞ
3 Þ

þ θ½N⊙N − 9σ⊙σ þ εðkÞ þ θ−1YðkÞ
4 �⊙2N:

Obviously, it is hard to get the closed-form solution to either
½∂fðLÞ∕∂L� ¼ 0 or ½∂fðNÞ∕∂N� ¼ 0, so we resort to the gradient
descent method to approximatively update these two variables
as

Lðkþ1Þ ¼ LðkÞ − Δ ×
∂fðLÞ
∂L

����
L¼LðkÞ

; (13)

Nðkþ1Þ ¼ NðkÞ − Δ ×
∂fðNÞ
∂N

����
N¼NðkÞ

: (14)

Here, Δ stands for the learning rate.
Optimize ε. The derivative of f with respect to ε is

∂fðεÞ
∂ε

¼ θðεþ NðkÞ⊙NðkÞ − 9σ⊙σ þ θ−1YðkÞ
4 Þ:

Under the non-negative assumption on ε, we can get its
updating rule as
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εðkþ1Þ ¼ maxð9σ⊙σ − NðkÞ⊙NðkÞ − θ−1YðkÞ
4 ; 0Þ: (15)

All the algorithm parameters are set as follows: λ ¼ 0.2,
θð0Þ ¼ 0.01, ρ ¼ 1.6, θmax ¼ 10, ΔL ¼ 0.01, and ΔN ¼ 0.05.
These constant parameters are statistically set by testing the
algorithm on a series of OCT data to obtain the best denoising
performance and least running time. In addition, all the param-
eters are fixed across all the experiments in this paper. We take
the average of input preregistered frames as the initialization
of the denoised frame. For more clarity, the entire iterative
algorithm based on the above derivations is summarized in
Algorithm 1.

2.4 Evaluation Criteria

To quantitatively evaluate the denoising performance of differ-
ent approaches, we utilize three widely used image quality cri-
teria including the peak SNR (PSNR), the structure similarity
(SSIM),41 and the figure of merit (FOM)42,43 as evaluation
metrics.

(a) PSNR: In digital image recovery, PSNR has tradition-
ally been widely used to assess the quality of the
processed image Lm×n, with respect to its ground
truth Im×n. PSNR is calculated as

PSNR ¼ 10

× log10

�
MAX2

1
mn

P
m
i¼1

P
n
j¼1 ½Lði; jÞ− Iði; jÞ�2

�
;

(16)

where MAX ¼ 2b − 1 is the maximum intensity of b
bit images. For example, for the widely used 8 bit
images, MAX ¼ 255. From the equation, we can see
that PSNR intuitively describes the intensity differ-
ence between two images and would be smaller
for low-quality recovered images. Empirically, the

typical PSNR for visually promising images is
roughly between 25 and 40 dB.

(b) SSIM: The structure similarity criterion is proposed in
Ref. 41 to measure the SSIMs between two images.
This criterion first selects two corresponding patch sets
pL ¼ fpk

L; k ¼ 1 · · · Kg and pI ¼ fpk
I ; k ¼ 1 · · · Kg

from L and I, respectively, with K being the patch
number, and then calculates the preliminary SSIM
between each patch pair pk

L and pk
I as

SSIMðpk
L; p

k
I Þ

¼ ð2μkLμkI þ c1Þð2σkL;I þ c2Þ
½ðμkLÞ2 þ ðμkI Þ2 þ c1�½ðσkLÞ2 þ ðσkI Þ2 þ c2�

;

(17)

where μkL and μkI are, respectively, the average pixel
intensities of patch pk

L and pk
I . σL and σI are the

patchs’ standard variances, and σL;I is the covariance
between pk

L and pk
I . In addition, c1 ¼ ðk1MAXÞ2 and

c2 ¼ ðk2MAXÞ2 are two constants, with k1 and k2
being two user-defined parameters whose default val-
ues are, respectively, 0.01 and 0.03. The final SSIM
score between two images is the average of all the
patches’ preliminary SSIM scores. The SSIM score
ranges from 0 to 1 and is higher when two images
have more similar structural information. Compared
with traditional metrics such as PSNR, which only
reveals the intensity differences between two images,
SSIM reflects the similarity in structural informa-
tion of an image pair, and thus is closer to human
perception.

(c) Edge preservation: Further processing of denoised
OCT images would be likely to involve the segmen-
tation of layers or identification of a particular image
feature. Thus, the preservation of edges in denoised
OCT images is very important. Here, we also adopt
the FOM42,43 to evaluate the edge preservation abil-
ities of various denoising methods. FOM is defined as

FOM ¼ 1

maxðnL; nIÞ
XnL
i¼1

1

1þ γd2i
; (18)

where nL and nI are, respectively, the numbers of
detected edge pixels in the reconstructed image
and the ground-truth image, di is the Euclidean dis-
tance between the i’th detected reconstructed edge
pixel and its nearest ground-truth edge pixel, and γ is
a scaling constant balancing the penalties to smeared
edges and isolated edges, which is typically set to be
1∕9.44 In this paper, we use the Canny edge detector
under default parameter settings in MATLAB. FOM
score ranges from 0 to 1 and is higher when the
reconstructed image has clearer edges and is more
similar to the ground-truth image.

3 Experimental Results
In this section, we test our denoising approach on three OCT
image sets and compare our denosing results with those of sev-
eral previously reported popular methods. In addition to the

Algorithm 1 The proposed multiframe algorithm for OCT denoising.

Input: Capturing data M and estimated noise standard deviation σ

Output: Denoised frames L and separated noise N

1 Lð0Þ ¼ M̄, Nð0Þ ¼ M − Lð0Þ, εð0Þ ¼ 0; Yð0Þ
1 · · · 4 ¼ 0;

2 While not converged do

3 Update Sðkþ1Þ
f1;2g according to Eqs. (11) and (12);

4 Update Lðkþ1Þ according to Eq. (13);

5 Update Nðkþ1Þ according to Eq. (14);

6 Update slack variables εðkþ1Þ according to Eq. (15);

7 Yðkþ1Þ
f1: : :4g ¼ YðkÞ

f1: : : 4g þ θ−1Gf1: : :4g;

8 θðkþ1Þ ¼ minðρθðkÞ; θmaxÞ;

9 k :¼ k þ 1.

10 end
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visual comparison, we also perform quantitative comparison in
terms of PSNR, SSIM, FOM, and running time.

3.1 Results on the Pig Eye Data and Performance
Comparison

In this experiment, we use the public pig eye OCT dataset in
Ref. 45, which is also used as the source data in Ref. 4. The
dataset is acquired using a Spectralis HRA & OCT (Heidelberg
Engineering) to scan a pig eye in the high-speed mode with 768
A-scans. There are a total of 455 images (each frame contains
768 × 496 pixels) in the dataset including 35 sets, and 13 frames
sharing the same imaging position are included in each set. All
the 35 positions correspond to a complete 0.384-mm shift in the
transversal direction. For each frame, the pixel spacing is
3.87 μm in the axial direction and 14 μm in the transversal
direction. To assess the quality of the recovered images, we need
a noise-free benchmark image for reference. However, due to the
high-imaging speed, the captured images’ SNR is very low.
Therefore, we utilize the same technique as in Ref. 4, in which
the averaged image of all the 455 preregistered frames is used as
the latent noise-free image.

Since the proposed method is multiframe based, we first
investigate the effect of the most important parameter—the
number of input frames—on our algorithm. Fixing all the other
parameters, we run a MATLAB implementation of our proposed
method on an Intel E7500 2.93 GHz CPU computer with 4GB
RAM and 64 bit Windows 7 system and compare the perfor-
mance of different numbers of input frames, ranging from 2
to 13. From the result in Fig. 2, we can see that our algorithm
still works using only 2 frames, and the reconstruction quality
gradually improves using an increasing number of frames from
2 to 8. This trend is much less obvious with more than 8 frames.
Based on this observation, we use 8 input frames in the follow-
ing experiments to compare our approach with other methods.
Note that there exists some slight drop when the frame number
grows larger than 8. This is because the frame registration gets
more difficult for a longer sequence and thus slightly hampers
the reconstruction.

Next, we run our algorithm and the other four popular
denoising methods on the OCT dataset for comparison. The
four methods include the complex diffusion method,46 the
Bayesian method,17 the non-stationary speckle compensation
method (NSC),18 and the multiframe wavelet OCT denoising

method.4 To validate the superior effectiveness of our approach,
we compare all the algorithms’ performances visually and quan-
titatively. What should be noticed is that the complex diffusion
method, the Bayesian method, and NSC are all single-frame
methods, so we take the average image of the registered
input frames as their single-frame input. In addition, the first
two methods assume a spatially invariant noise parameter (stan-
dard deviation). Correspondingly, we use the maximum in the
estimated deviation matrix as the input standard deviation of
noise. By random selection, the serial numbers of the input 8
sequential frames are from “35_6” to “35_13.”

The recovered images are shown in Fig. 3, where only
the first frame is presented for each method. We can see that
the recovered images of the anisotropic diffusion method, the
Bayesian method, and NSC still contain undesired noise,
which largely degenerates the image quality and makes these
three methods less competitive than the other two techniques.
On the whole, the multiframe wavelet method and our method
are both superior to the three single-frame approaches. This
superiority is attributed to the fact that the multiframe methods
utilize the interframe correlation and redundancy, which would
offer more information of the latent noise-free data. Comparing
the results of these two multiframe methods, we can see that in
the smooth regions, the wavelet method leaves out more noise
than our method. In the textured regions, the result of our
method maintains a higher color contrast which would improve
the visual effects. A closer comparison is presented in the close-
ups. For example, in the green-rectangle-highlighted region, the
wavelet method nearly blurs out the details of the white spot on
the left side, while our method still contains gray value changes
which would provide important information for diagnosis.

Numerical assessments are shown in Table 1. For the entire
image, we can see that our method could raise the noisy
images’s PSNR from 17.19 to 31.74 dB and the SSIM from
0.13 to 0.91. In terms of all the three evaluation criteria includ-
ing PSNR, SSIM, and FOM, our method consistently has an
advantage over the other methods. Comparing the two multi-
frame methods, namely the multiframe wavelet method and
our method, we can see that our approach is superior in
PSNR and SSIM by around 1 dB and 0.1, respectively. Our
superior performance is mainly attributed to two factors: the
combined constraints from both the interframe and intraframe
priors and the good convergence of the derived algorithm.
Comparing the numerical evaluation results of the two selected
regions of interests, we can also see the clearer advantage of our
method over the other methods. What is more, the running time
comparison is also provided in Table 1 (the noise estimation
time is also included for all the four algorithms). We run the
MATLAB codes of our algorithm and the other three methods
except for NSC on our computer, while the running time of NSC
is provided by its proposers who run their MATLAB and C++
implementation on a different platform. We can see that our
approach needs around 36 s to process one frame and is of sim-
ilar efficiency to the Bayesian method which is the fastest algo-
rithm among the popular methods except for NSC.

3.2 Analyzing Optical Coherence Tomography
Images of Human Retina

To test the practical denoising effectiveness of our method, we
conduct a denoising experiment on human retinal OCT images.
We use the same public dataset as that used in Ref. 47, which is
acquired by an spectral domain (SD)-OCT imaging system from
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Fig. 2 Reconstruction quality versus input frame number. Input: 2 to
14 frames of the pig eye data. The solid blue line corresponds to the
axis on the left ranging from 25 to 32, while the two dashed red lines
correspond to the axis on the right ranging from 0.3 to 1.

Journal of Biomedical Optics 036006-6 March 2015 • Vol. 20(3)

Bian et al.: Multiframe denoising of high-speed optical coherence tomography data. . .



Bioptigen Inc. with ∼4.5-μm axial resolution, 500 A-scans
per B-scan, and 5 azimuthally repeated B-scans in each
volume. Referring to the processing progress described in
Sec. 2.1, we first register the OCT frames and then use different
methods to denoise these frames. Considering that the aniso-
tropic diffusion method, the Bayesian method, and NSC
leave too much noise on the recovered images, and thus
show little competitiveness compared with the other two multi-
frame methods, here we only present the denoising results of
the multiframe wavelet method and our method for clearer
comparison.

The results are shown in Fig. 4, which exhibit a similar per-
formance ranking to that of the pig eye data. Comparing the
denoising results produced by the multiframe wavelet method
and our proposed method carefully, we can see that the result
of the wavelet method contains undesired edge burrs, while
our result presents clearer layer boundaries (such as the horizon-
tal layer edges in the two selected regions), which would greatly

help in follow-up analysis of the denoised images, such as OCT
layer segmentation and diagnosis.

3.3 Phantom Study Using the Orange Data

To further validate the advantages of the proposed method in
preserving image details while removing noise, we use the
same orange dataset as in Ref. 48 to conduct a phantom study.
The dataset is acquired by an SD-OCT system with the axial
resolution being 4 μm and the transversal resolution being
12 μm. This data include 100 aligned frames and contain
many thin structures corresponding to the tangerine pith.
Similar to the experiment on human retina, considering the mul-
tiframe methods largely outperform the single-frame methods in
both noise attenuation and detail preservation, here we only
show the results of the multiframe wavelet method as well as
ours. We still use 8 input frames and the results are shown in
Fig. 5.
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Fig. 3 Comparison with the other four popular methods. Input: 8 frames of the pig eye data. (a) is the
original image in log transformed space, while (b) is the averaged image of 455 registered frames. (c) is
the averaged image of the input 8 frames, and (d)–(g) are the recovered results of four popular methods.
The result of our method is shown in (h). The two clipped patches on the right of each subfigure are
closeups of the regions of interest.
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Table 1 Quantitative comparisons among different denoising methods.

Metric Input Average Diffusion Bayesian NSCa Wavelet Ours

Entire image PSNR (dB) 17.19 24.56 29.14 28.38 29.82 30.75 31.74

SSIM 0.12 0.45 0.73 0.70 0.81 0.86 0.91

Running time (s) — — 79 33 2 60 36

Red clip PSNR (dB) 15.03 22.02 26.60 26.07 27.47 27.85 28.92

SSIM 0.06 0.29 0.65 0.63 0.71 0.73 0.81

FOM 0.43 0.46 0.51 0.57 0.60 0.61 0.63

Green clip PSNR (dB) 15.13 21.91 26.14 25.35 26.83 27.83 28.75

SSIM 0.06 0.25 0.60 0.57 0.66 0.72 0.80

FOM 0.48 0.49 0.51 0.53 0.58 0.58 0.58

aThe performance of NSC is tested by its proposers on the AMD Athlon X3 II CPU with 8 GB of RAM andWindows 7 64-bit system, using MATLAB
and C++ programming for high-computation efficiency.
Note: The bold values represent the best performance in terms of each metric (i.e., highest PSNR, highest SSIM, highest FOM and lowest running
time) among all the methods.

(c) Multiframe wavelet method (d) Our method

(e) Closeups of region #1

(f) Closeups of region #2
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Fig. 4 Denoising results of the human retinal OCT images. Input: 5 frames of the human retina data.
(a) shows 1 of the 5 captured frames, and (b) is the average of the 5 frames. (c) and (d) are, respectively,
the results of the multiframe wavelet method and our method. Closeups of two selected regions of
interest are shown in (e) and (f), which offer a clearer comparison.
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For performance comparison between the two methods, we
consider the average of 100 frames as benchmark, as shown in
Fig. 5(c). From the results in Fig. 5(d), we can clearly see that
some fine structural details are smoothed out by the wavelet
method, especially in the region highlighted by the red rectan-
gle. This is because the wavelet method truncates the wavelet
coefficients of the input frames to attenuate noise, and some
entries describing fine structures tend to be treated as speckle
noise and removed. On the contrary, our method can preserve
the thin structures quite well during noise suppression, as shown
in Fig. 5(e). Compared against the results in Fig. 5(c), one can
see clearly that our approach is more competitive in such cases
with rich thin structures.

4 Conclusions and Discussions

4.1 Summary and Conclusions

In this study, we propose a multiframe OCT denoising method
utilizing the constraints from both interframe and intraframe pri-
ors. Specifically, the interframe prior refers to the low rank of
registered OCT frames and the intraframe prior is the sparsity of
the image gradient. Benefiting from the proper convexification
transformations and usage of ALM, the derived algorithm con-
verges well on different data. In addition, by incorporating a
nonparametric and nonuniform noise description, our approach
is applicable for different noise models.

On the adopted benchmark data, our approach could improve
the OCT image’s quality by raising the image’s PSNR from
17.19 to 31.74 dB and SSIM from 0.12 to 0.91, in around
36 s for each frame. The comparisons with the other four popu-
lar methods on the three datasets reveal that our method has
advantages mainly in two aspects: (1) being able to attenuate
speckle noise effectively and preserve crucial image details;
(2) with efficiency comparable with the reported fastest
approaches. Such a high performance of the proposed method
is mainly the result of the combined prior modeling and effective
optimization algorithm.

4.2 Limitations and Future Extensions

The performance of our method depends on the registration
accuracy because the low-rank prior in the objective function
does not hold for an unaligned frame stack. This is also a chal-
lenge for other multiframe denoising methods and needs to be
addressed by the progress of noise robust matching techniques.
In addition, a larger frame number is favorable to take advantage
of the low-rank prior. Therefore, one needs to set the system’s
frame rate to balance the noise level and the number of available
frames in practical applications.

Besides, the widely used anisotropic total variation is utilized
as the intraframe prior, which penalizes the diagonal gradients
more significantly than the horizontal and vertical ones. This
means that the utilized nonuniform constraint on image intensity
changes along different directions, which may introduce unde-
sired artifacts in the denoised images. Thus, exploring an iso-
tropic intraframe prior would be one of our future extensions.

In addition, the running time of the proposed method can be
further reduced. There are two very time-consuming calcula-
tions in the current algorithm including the requisite relatively
large iteration number and the SVD. To decrease the iterations,
we can utilize an accelerated gradient descent scheme to speed
up the method such as using adaptive learning rates instead of a
constant rate. For a faster SVD, we can replace the currently
adopted default implementation in MATLAB with an acceler-
ated SVD algorithm such as the block Lanczos algorithm.49

Furthermore, we can also implement the proposed algorithm
with C or C++ and use graphics processing unit accelerating
techniques48,50 to further speed up the method.
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(a) Captured image

(b) Average of 8 frames

(d) Multiframe wavelet method (e) Our method

(c) Average of 100 frames

Fig. 5 Phantom study on the proposed method: (a) shows one of the captured frames. (b) and (c) are,
respectively, the average of the input 8 frames and all 100 frames. (d) and (e) show, respectively, the
results of the multiframe wavelet method and our approach.
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