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Abstract. Many studies have been carried out in order to detect and quantify the level of mental stress by
means of different physiological signals. From the physiological point of view, stress promptly affects brain
and cardiac function; therefore, stress can be assessed by analyzing the brain- and heart-related signals
more efficiently. Signals produced by functional near-infrared spectroscopy (fNIRS) of the brain together
with the heart rate (HR) are employed to assess the stress induced by the Montreal Imaging Stress Task.
Two different versions of the HR are used in this study. The first one is the commonly used HR derived
from the electrocardiogram (ECG) and is considered as the reference HR (RHR). The other is the HR computed
from the fNIRS signal (EHR) by means of an effective combinational algorithm. fNIRS and ECG signals were
simultaneously recorded from 10 volunteers, and EHR and RHR are derived from them, respectively. Our results
showed a high degree of agreement [r > 0.9, BAR (Bland Altman ratio) <5%] between the two HR. A principal
component analysis/support vector machine-based algorithm for stress classification is developed and applied
to the three measurements of fNIRS, EHR, and RHR and a classification accuracy of 78.8%, 94.6%, and 62.2%
were obtained for the three measurements, respectively. From these observations, it can be concluded that the
EHR carries more useful information with regards to the mental stress than the RHR and fNIRS signals.
Therefore, EHR can be used alone or in combination with the fNIRS signal for a more accurate and real-
time stress detection and classification. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.23

.11.115001]
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1 Introduction

Stress is known as one of the main factors threatening human
health. It has inevitable consequences on performance in daily
life and in the workplace, especially where risky situations are
present. ! People with low psychosocial resources are more sus-
ceptible to illness and mood disturbance in stressful situations,
even if little stress exists in their lives.® Long-term exposure to
stress causes a variety of health problems, such as heart disease,
obesity, diabetes, stroke, and depression.4 Therefore, detecting
and managing stress in its early stages is vital to limiting its
damaging consequences on health.

Stress detection is useful not only for research and empirical
studies but also for nonclinical applications. For example, such
systems can be employed by people who are in a stressful work-
ing environment in order to evaluate occupational stress. In this
regard, psychological games have been designed in the field of
biofeedback, which put the user in a tense and stressful virtual
environment while the physiological signals are recorded simul-
taneously, in order to recognize online the mental stress and
feedback the related information to the user.’

Appropriate standardized protocols for studies of stress are
required to induce stress in a reliable and credible way. They
have been categorized into three groups: physical, psychologi-
cal, and mixed stressors, which have different physiological
effects on the human body and are used in the various applica-
tions and studies. Physical stressors alter systemic circulation
and make direct biochemical changes, while psychological

*Address all correspondence to: Seyed Kamaledin Setarehdan, E-mail:
ksetareh @ut.ac.ir

Journal of Biomedical Optics

115001-1

stressors induce behavioral, physiological, and biochemical
alterations in the brain. Mixed stressors include the other two
stressors’ alteration and therefore make changes in both the sys-
temic circulation and brain regions.® Montreal Imaging Stress
Task (MIST) is one of the popular psychological stressor tech-
niques employed in stress assessment studies.” In the MIST,
mental arithmetic calculations are performed during a stressful
condition (in a limited time) while participants’ responses are
assessed.®

The autonomic nervous system (ANS) is responsible for
regulating involuntary body functions such as heartbeat,
blood flow, and breathing. The ANS is divided into two
branches: the sympathetic nervous system (SNS) and the para-
sympathetic nervous system.’ Stress activates the SNS and
hence raises the cortisol hormone in the adrenal cortex. As
a result of cortisol release in the body, function, and structure
of the brain are affected. Therefore, stress can be assessed by
brain signals including electroencephalography (EEG) and
functional near-infrared spectroscopy (fNIRS).!*!! In the past
decade, fNIRS has been used as a measure to quantify the men-
tal stress and workload,'>"3 showing increased concentration of
oxyhemoglobin (HbO,) and decreased concentration of deoxy-
hemoglobin (HHD) in the prefrontal cortex (PFC) during a men-
tal stress. In addition, fNIRS has been used in comparison and in
combination with EEG signal for stress assessment.*!*

Under stress, the ANS affects the cardiac function and will
act to raise the heart rate (HR) and respiration activity.'
Therefore, scanning cardiac activity is an informative
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measurement in order to evaluate the state of ANS. Heart rate
variability (HRV) is a measure of the variations in the time inter-
vals between the heartbeats, which is controlled by the ANS.
The gold standard of HR tracking is to analyze the interbeat
intervals (IBIs) determined using an electrocardiogram
device.'® Alternatively, HR signal can be measured based on
blood flow pulsation derived from photoplethysmography
(PPG) or fNIRS signals.!”!® Many studies have been performed
in order to assess the stress by measuring the HR or HRV.!"19-2?
In recent years, HR or HRV measurement has been employed
for stress assessment in combination with the measurements
from other physiological signals including galvanic skin
response, skin temperature, pupil diameter, electrooculogram,
and EEG.>*%

NIR devices measure the hemodynamic changes, which are
caused not only by cognitive activities of the brain but also by
the so-called physiological artifacts such as HR, breathing, and
Mayer signal, and the nonphysiological noises such as motion
artifact and electrical noises. While the physiological artifacts
and other noises can be eliminated using different algorithms
including wavelet analysis, auto-regression models, conven-
tional or adaptive filtering, Kalman filter, adaptive Viener filter,
and independent component analysis (ICA),*** the physiologi-
cal artifact produced by the heart beat can be extracted from the
fNIRS signals and effectively used for the HR analysis as
another source of information. Therefore, by means of only
one portable device, it is possible to extract two different signals,
which contain important functional information from both brain
and heart. Since 2011, several studies have been performed in
order to compute the HR signal from the fNIRS signals.
Trajkovic et al. used empirical mode decomposition and param-
eter estimation of a model for almost periodic signals algorithms
to estimate normal-to-normal (NN) intervals from the fNIRS
signal.'® Although the accuracy of their proposed method
was relatively acceptable and appropriate, due to the nature
of their algorithm, it cannot be applied in the real-time applica-
tions. Perdue et al.>* used the Nakajima et al.>* band-pass filter-
ing method, which had been applied to PPG signal, to extract
HR from the fNIRS signal in infants.

In previous studies, although they could derive HR from the
fNIRS signal with an acceptable accuracy, due to the fact that
each algorithm has been applied in diverse conditions and to
different signals, the presented results are not comparable.
Therefore, it is necessary to apply all methods to one sample
dataset for a better comparative study.

Efficient derivation of the HR from the fNIRS signal gives an
opportunity to use the HR measurement as a heart response in
combination with the fNIRS signal, which modulates the brain
activity. Since stress can functionally affect the brain and heart,
it is possible to assess the amount of stress by analyzing the
brain and heart measurements, which can be derived by
using only the fNIRS signals.

In this study, combining and improving peak detection algo-
rithms including AMPD,* S function,*® and M2D,* a new real-
time algorithm was introduced to extract the heartbeat signal
from the fNIRS signal. First, this algorithm was applied to
the simulated fNIRS and ECG signals to identify each heartbeat,
which was then used for IBIs calculation. Next, this algorithm
was applied to the in vivo signals recorded in the laboratory
environment. The HR derived from the fNIRS signal (EHR)
was then compared to the reference HR derived from the
ECG signal (RHR) in both simulation and real data.
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Several feature conditioning and classification algorithms,
including principal component analysis (PCA),* ICA,*® support
vector machine (SVM),*® and multilayer perceptron (MLP),*!
were developed and used for stress level classification. In
this study, a modified version of the MIST® was designed
and used to induce a higher level of mental stress.

As it was expected, the proposed combination of the peak
detection algorithms computes the EHR derived from both
simulated and in vivo measured fNIRS signals more accurately
rather than employing the algorithms individually. In addition,
on the classification part, the EHR could outperform the RHR
and fNIRS measurements in the stress assessment.

The rest of the paper is organized as follows. In Sec. 2, the
materials and methods are introduced. In Sec. 3, after illustrating
the results of HR derivation in both simulated and in vivo mea-
sured fNIRS signals, the result of stress classification is pre-
sented. The discussion and conclusion are drawn in Secs. 4
and 5, respectively.

2 Materials and Methods

2.1 Participants

In this study, fNIRS and ECG signals were simultaneously
recorded from 10 healthy, right-handed, male adults (aged
25.3 & 2.6). According to the self-report, none of the partici-
pants had psychological and neurological diseases and did
not take any special medication. They were informed about
the experiment and given written consent prior to the
experiment.

2.2 Data Acquisition Protocol

23 fNIRS channels were used to monitor the activity of the brain
in the PFC region. Figure 1 shows the locations of the transmit-
ters, receivers, and hence the arrangement of channels. The
OxyMon NIRS system (Artinis Medical Systems, The
Netherlands), which was equipped with light sources at wave-
length 845 and 762 nm, and a sampling rate of 10 Hz, was
employed. The distance between each of the transmitters and
receivers was set to 3 cm.

Fig. 1 The location of the fNIRS detectors and sources, and the lay-
out of the 23 fNIRS channels. The source-detector distance was con-
sidered 3 cm.
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Fig. 2 Three-lead ECG placement, in which three signals were
recorded with reference located on the right earlobe.

ECG signals were recorded using three Ag/AgCl electrodes
placed on the sites RA, LA, and LL (Fig. 2) with reference to the
electrode located on the right earlobe in a monopolar configu-
ration and with a sampling rate of 512 Hz. Meanwhile, Nasion
was selected as the ground for the ECG and NIR devices. In this
study, the ECG signal recorded from the LL electrode is proc-
essed while the other two signals were recorded to be used in
case the LL signal is noisy and inappropriate.

2.3 Experiment Procedure

The HR of the participants was measured before entering the
laboratory environment. In order to reduce the adverse impact
of anxiety caused by the laboratory and medical devices on the
experiment, the signal recording process was started in that envi-
ronment when the HR of the participants reaches its normal
range determined before entering the laboratory.

Signals were registered at the Iranian National Brain
Mapping Lab. The laboratory environment was silent, venti-
lated, and free from any environmental stress. Participants
were asked to sit on a comfortable chair, which was located
~1.5 m far from the monitor and avoid shaking during the
experiment as much as possible (Fig. 3). The experiment has
an ethics code of IRIUMS.REC.1396.810194120 from Iranian
University of Medical Sciences.

2.4 Task Sequence

In this study, MIST*® is designed to induce mental stress.
Several modifications are performed in order to induce a higher
level of stress during the task. This task includes four levels, as
follows:

1. In the first level, a brief explanation is given to the par-
ticipant to get familiar with the task sequence.

2. Then, in the second level (training level), the partici-
pants perform a task including simple mathematical
calculations (summation, subtraction, multiplication,
or division of two or three operands) for 1 min in
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Fig. 3 The experiment procedure for participant performing the task.

order to accustom to the task. The answers are integer
numbers between zero and nine. Operands and oper-
ators related to each question are randomly selected
with a uniform distribution from sets [0-9999] and
{+, —, *,/}, respectively. At this level, the participants
can estimate the response time to the questions. Since
this level is only for training, no signal is taken from
the individuals.

3. The third level (control level) is similar to the previous
one. Wrong answers are not shown to the participants
and there is also no time limitation. However, there are
two main differences. First, the fNIRS and ECG sig-
nals are recorded simultaneously and second, the aver-
age of the answering time to each question is also
calculated.

4. In the fourth level (stress level), a time limitation is
added to the third level. The time considered to
solve each question is 90% of the mean time calculated
in the control level. Moreover, while incorrect answer
or the completion of the time to answer each question
is marked with “incorrect” and “time’s up” messages,
they are also emphasized by changing the background
color to red. At this level, the arrangement of the but-
tons 3 to 9 is changed in order to induce a higher level
of stress. Changing the location of the buttons will add
more shock and stress to the participants because dur-
ing the previous two levels the user has been accus-
tomed to the sequential order of the buttons.

Time scheduling in the data collection protocol for each par-
ticipant is as follows. The total time of the protocol is about
11 min. The first 1 min is aimed to train the participants in
order to get familiar with the task. Then there are two 5 min
period namely “control” and “stress” levels, each performed
under different conditions. Each level lasts 5 min, including
20 s “rest” and 30 s ‘“calculation” which are irritated five
times. During the cycles of calculation in the control level, to
reduce the stress, there is no stop at the end of the 30 s period
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Fig. 4 The block diagram of the MIST, including training, control, and stress levels. Control and stress
levels have five two-part sections, which consist of 20s rest and 30s mathematical calculation under the

presented circumstances.

till he/she responds the final question. In addition, in both con-
trol and stress levels going from the rest part to the calculation is
controlled by the participant (clicking on the keyboard or
mouse) so not to add excess stress. The block diagram of the
training, control, and stress levels is shown in Fig. 4.

Before starting the task, the participants were encouraged to
achieve more points in the final level (stress level) and they were
asked to do their best to solve the questions. In addition, the
percentages of the correct answers in the control and stress lev-
els were calculated to obtain the participants’ engagement at
each level. According to Ref. 4, the less percentage of correct
answers, the less stress is transferred to the subject. For this rea-
son, signals related to those participants whose correct answers
in the control and stress levels are less than 90% and 30%,
respectively, are removed from the dataset.

In order to synchronize the task with the NIR and ECG devi-
ces, parallel communication interface is used. The starting and
ending of the calculation parts in the control and stress levels are
marketed by sending trigger pulses.

P

2.5 Signal Processing

The method considered to achieve the objectives of this study
consists of two main parts: HR derivation and stress classifica-
tion. These two parts are presented in the block diagram shown
in Fig. 5.

2.5.1 HR derivation

The process of HR derivation includes three subsections as fol-
lows: preprocessing, derivation process, and correction process.
At the end of this section, fNIRS signal simulation method is
explained.

Preprocessing. Two preprocessing steps are employed in
order to eliminate the artifacts and maintain the heart beat com-
ponent in the fNIRS signal. First, the algorithm proposed in
Ref. 37 is employed to eliminate the sharp changes of the base-
line due to such factors as motion artifact or undesired light

S S S WS S SN S S S S WSS S M S M S SN S M S S S S Sy,

EHR |

| Preprocessing | —_— IDerivation processl —_— | Correction process |—|—

HR derivation

5 Filtered fNIRS
| Band pass filter I

Stress classification

Feature extraction

Feature conditioning

MLP SVM classifier | PCA@(

Fig. 5 Schematic showing the signal processing methods for stress assessment consists of two main

parts: HR derivation and stress classification.
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intensity variations of the sources. Then, a band-pass filter con-
sisting of two zero-phase Butterworth filters, a 1.9-Hz low-pass
filter and a 1-Hz high-pass filter is used to remove the unwanted
components including Mayer waves with a frequency compo-
nent around 0.1 Hz, respiratory fluctuations, and other fre-
quency components unrelated to the heart beat fluctuations of
the fNIRS signal.

In order to compute HR from the ECG signal (RHR), it is
necessary to first eliminate the artifacts, noises, and unrelated
frequency components. It was observed that a zero-phase
low-pass Butterworth filter with a cutoff frequency of
0.44 Hz can effectively identify the R-peak in the ECG signal
recorded from the LL electrode reference to the electrode placed
on the earlobe.

Derivation process. Detection of the peak points of the sig-
nal is the most important part of the HR derivation process. After
the extraction of the heart beat signal, HR is measured by cal-
culating the time interval between the two adjacent peaks. There
are real-time algorithms to detect the peaks of a signal. In this
study, four algorithms including AMPD, S1 and S5 functions,
and M2D are employed to detect the peak points in the fNIRS
signal.

Two reforms are made to the S1 and S5 functions, and M2D
algorithms in this study in order to improve their performance as
follows:

1. In addition to the calculations performed in these algo-
rithms, first-difference of the signal is also obtained. In
this correction process, a point of a signal will be
determined as a peak point, when it satisfies two con-
ditions as follows: First, the value of its objective func-
tion is larger than the predetermined threshold, and
second, the value of the first-difference in that point
is also 0.1 times greater than the maximum first-
difference.

2. Some of the points detected by the algorithms might
be relative maximum and nonpeak. A reform is done
in order to exclude them from the detected peak points
as follows: after detecting point nl as a peak, 0.25-s
searching before the time n1 is done (which is equal to
F /4 samples before the time n1, where F is the sam-
pling frequency). If there is another peak, which has
been previously detected in the 0.25-s period, the
point n1 is considered as a relative maximum and is
removed from the detected peak points (otherwise
nl will be remarked as a peak).

In order to combine the performance of the algorithms, the
average of the IBIs measured by the mentioned four techniques
is computed based on a weighted averaging procedure named
weighted mean algorithm. The weights are selected based on
the simulation results. The simulation process is explained in
Sec. 2.5.1.4. According to Eq. (1), the weight of each algorithm
is calculated by inverting the normalized BAR (Bland Altman
ratio)*? computed when it is applied to the simulated signal

1

W. = ;o j=1,...,4. 1
! (BARj/Z?:lBARi) / M

The recommended weights for the AMPD, S5 function, S1
function, and M2D are 5.04, 4.39, 3.78, and 3.24, respectively,
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which have been determined based on the performed simulation
in this study.

Correction process. Time intervals calculated between the
two adjacent peaks might be apart from their correct values
due to false positive and false negative errors of the peak detec-
tion. In order to reduce these errors, a correction process is
needed to specify these cases and fix the time intervals. In
this study, a correction process is introduced to eliminate the
outliers of the IBIs based on a window method. In addition
to total standard deviation (SD) of the IBIs calculated from
the start of the recording to the current time, two other metrics
including the mean (m) and standard deviation (sd) of the IBIs
are calculated in the recent 4 s interval. These three parameters
are used to correct the IBI which is outside the permissible
range. The permissible range in this correction process is
based on the study.** The sd and SD parameters represent the
local and total signal variations, respectively. Since the motion
artifact causes sudden local oscillations in the signal, it is locally
considered in the configuration of the permissible range by
using the sd calculated during the 4-s time intervals. If the fluc-
tuations of the IBIs during the 4-s time interval are high, it is
better to reduce the permissible range in order to make further
corrections. Therefore, sd must be considered in the denomina-
tor when calculating the permissible range. Moreover, in order
to consider the natural oscillations of the HR signal in the cor-
rection process, SD is included as a multiplicand in the permis-
sible range. The HR correction process is described step by step
as follows.

1. The current IBI is examined.

2. The mean (m) and standard deviation (sd) of IBIs in
the recent 4 s interval are calculated.

3. The standard deviation of IBIs from the start to the
present time is computed (SD).

4. Parameter k is defined as follows: k = 0.8 % 15/sd.

5. Finally, if the IBI is outside the range of
m—k *xSD < IBI < m + k % SD, it will be considered
as outlier and the corrected value will be obtained by a
cubic interpolation of the closest neighboring IBIs
which are within the permissible range.

In the descriptions aforementioned, the constants 0.8 and 15
used in calculating the parameter k have been experimentally
obtained. If there is no permissible IBI in the 4-s neighborhood
of the IBI which is outside the permissible range, the fluctua-
tions of HR signal in that range are normal, not caused by
the instantaneous noises, and hence the HR will not be
corrected.

In this study, the oxyhemoglobin signals are employed to
compute EHR using the proposed derivation and correction
process. Although each participant has only one reference HR
signal derived from his/her ECG signal using the AMPD algo-
rithm, 23 different EHR signals are derived from 23 fNIRS
channels (each single HR signal is obtained from one channel).

Simulation. In addition to the in vivo measurement in this
study, simulation is added to compare and analyze the applied
HR derivation algorithms. The fNIRS signal simulation method
performed in this paper is based on the simulation procedure
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proposed in Ref. 43. Several changes are made to generate a
simulated fNIRS signal, which is more realistic and closer to
the real ones. In addition, the measurements proposed in
article* are used to initialize the required parameters for simu-
lation. In this simulation, instead of instantaneous changes in the
frequency and amplitude of the sinusoidal signals, each N peri-
ods of the sinusoidal component, frequency and amplitude are
changed (N is chosen proportional to the signal length). As a
consequence, the high-frequency artifact, which is due to the
instantaneous variations of the frequency and amplitude will
be eliminated. Moreover, when changing the frequency of the
signal, the sinusoidal phase of the signal is reorganized to
remove the abrupt changes in the simulated signal.

2.5.2 Stress classification

In this regard, the stress classification is separately performed
using fNIRS, EHR, and RHR signals recorded during the
MIST. Initially, the features which are described in the following
are extracted. Then, they are pruned by applying the PCA and
ICA feature conditioning algorithms, and features with less cor-
relation and dependence are obtained. Finally, the dataset is cat-
egorized using SVM and MLP classifiers.

Feature selection is considered as one of the most important
steps in the classification process. So that the proper extraction
which means considering comprehensive features of the signal,
even if simple classifiers are used, can greatly increase the clas-
sification accuracy. For this reason, in addition to defining some
features in the time domain, it is better to extract some other
features in the frequency domain of the signal. One of the advan-
tages of feature selection in the frequency domain is that the
variations and fluctuations of the signal can be revealed more
completely with fewer features than time domain.

In this study, nine different features, including four features
in the time domain (m,, sd,, S;, K,) and five features in the fre-
quency domain (m fs sd S Ky, LF/HF) are extracted from the
HR measurements. In this regard, m,, and sd,, which are rep-
resenting AVNN (average of NN intervals) and SDNN (standard
deviation of NN intervals), respectively, are time-domain HR
metrics.*” In order to more efficiently demonstrate the distribu-
tion of the HR data in the feature extraction process, in addition
to the first two statistical moments of the HR data, the third and
fourth moments are also calculated (S,, K,). In the frequency
domain, recent studies have reported that LF/HF, which
means the ratio of the low frequency components (LF) to the
high frequency components (HF) of the HR measurements,
does not accurately measure the autonomic balance.*>*
However, it is employed in this study as a feature since it
has been able to provide a better characterization of HR derived
from fNIRS signal compared to the individually used LF and HF
metrics under stressful condition.*’ The other features in the fre-
quency domain of the HR measurements are extracted as fol-
lows: the Fourier transform of the data is considered as the
probability density function (PDF) of random variable f (fre-
quency), and therefore from the first to fourth statistical
moments of random variable f are obtained.

Regarding the fNIRS signal, the presented four features in
the time domain, which are the first four statistical moments
of the signal, are also extracted. These features characterize
the time-history data and have been employed in brain—com-
puter interface (BCI) studies to represent the fNIRS signal.*®
In addition, the other four statistical moments in the frequency
domain (my, sdy, Sy, and K ) are extracted in order to efficiently
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Table 1 Features that are extracted from the time and frequency
domains of HR and fNIRS signals.

Feature Description

m; Ny X

sd; ﬁEL (x; — my)?

S WZL (x; —my)?

Ki Fesat it (Xi = my)*

my SN X (f) % 1

sd VN (= me? s X ()

Sy s%,st,’L (fi=myg)®x X'(f)

Ky S%?Z,!L (fi = mp)* « X' (f)

LF/HF Ratio of low-frequency component (0.04 to

0.15 Hz) to high-frequency component
(0.15 to 0.4 Hz) of HR measurement

reveal the fluctuations of the fNIRS signal in the extracted fea-
tures. The selected features are presented in Table 1. The
descriptions of the statistical moments are according to Ref. 49.

Where x;;i = 1,..., N is the desired signal (fNIRS or HR)
in the time domain which has been windowed with a particular
length (N). The signal X'(f;); i = 1,...,N is the normalized
Fourier transform amplitude of the windowed signal, which
fi is the digitized frequency in the range of [0,Fs/2] (Fs is
the sampling frequency). Signal X'(f) is obtained according
to Eq. (2). Where |X(f;)| is the amplitude of the signal
Fourier transform in the frequency of f;,

XU
YD =5 i @

As mentioned in Sec. 2.4, control and stress levels have five
two-part periods: 20-s rest, and 30-s calculation under the pre-
sented circumstances. In this study, same as classification pro-
cedure conducted by Al-Shargie et al.,* a classification of the
30-s parts between control level and their corresponding at
the stress level is desired. To form the dataset, 10 30-s parts
are separated from each signal. Then each part is divided
into two 15-s halves, and the mentioned features are extracted
from each of these 15-s halves. This process is applied to both
oxyhemoglobin and deoxyhemoglobin signals of fNIRS chan-
nels, and hence 10 data (five control data and five stress data)
with 32 features are extracted from each fNIRS channel.
Regarding the HR measurements, 10 data with 18 features
are constructed from each measurement.

3 Results

3.1 Results of HR Derivation Algorithms

3.1.1 Results of applying HR derivation algorithms to
simulated fNIRS signal

The comparison of an example-based simulated and in vivo
measured fNIRS signal is shown in Fig. 6. It is observed that
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Fig. 6 An example of (a) in vivo measurement and (b) simulated fNIRS signal.

the baseline and high-frequency oscillations of both signals are
similar in terms of structure.

The EHR signal computed by applying the weighted mean
algorithm is shown in Fig. 7 compared with the reference HR
(RHR). A quite good agreement can be seen between the simu-
lated RHR and EHR signals.

To quantitatively compare the algorithms used for derivation
of the HR from the fNIRS signal, following metrics were com-
puted: mean error (mean difference between EHR and RHR),
SD error (standard deviation of error), RMS error (root mean
square of error), BAR (the ratio of half the range of limits
of agreement to the mean of the pairwise measurements),

maximum error, mean, and standard deviation of the EHR
and RHR, and Spearman linear correlation between EHR and
RHR. These metrics have been introduced as the measures to
verify the agreement between HR measurements derived
from PPG and ECG.*

The weights of the proposed weighted mean algorithm were
obtained using the BAR calculated for each of the S1 function,
S5 function, AMPD, and M2D algorithms. Comparing the val-
ues reported in Table 2, the best algorithm in each metric is
identified. The weighted mean algorithm in five metrics and
AMPD algorithm in two metrics are better than the other
algorithms.
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Fig. 7 (Blue) EHR and (red) RHR signals derived from the simulated fNIRS signal.
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Table 2 Quantitative comparison between the algorithms applied to the simulated fNIRS signal.

Quantity S1 function S5 function AMPD M2D Weighted mean
Mean error (s) 0.026 0.020 0.014 0.052 0.022

SD error (s) 0.040 0.035 0.030 0.047 0.023
RMS error (s) 0.048 0.040 0.033 0.070 0.032
BAR (%) 7.206 6.234 5.393 8.445 4.210
Maximum error 0.150 0.153 0.158 0.222 0.136
Mean of EHR and RHR (s) 1.088, 1.089 1.088, 1.089 1.090, 1.089 1.090, 1.089 1.089, 1.089
SD of EHR and RHR (s) 0.099, 0.106 0.096, 0.106 0.098, 0.106 0.105, 0.106 0.093, 1.062
Linear correlation (%) 88.823 92.117 95.801 76.594 95.684

Note: The best results for each metric is written in bold.

3.1.2 Results of applying HR derivation algorithms to
in vivo measured fNIRS signal

In this section, the results of applying the HR derivation algo-
rithms to the signals recorded during the MIST are evaluated.
Figure 8 shows the average of the EHR signal computed
from one of the participants’ signals using the weighted mean
algorithm, comparing with the RHR signal derived from the
ECG signal using the AMPD algorithm. The linear correlation
between the two signals is 98.48%.

The statistical metrics proposed in the previous section were
obtained for EHR derived from the in vivo measurements in
order to quantitatively compare the algorithms. In Table 3,
the mean and standard deviation of the metrics calculated for
each algorithm are summarized. It is observed that the weighted
mean algorithm in seven metrics and the M2D algorithm in one
metric are better than other algorithms.

The results show that the weighted mean algorithm performs
a better derivation of EHR in comparison to the individual
algorithms, producing a higher percentage of Spearman linear
correlation of 92.254 £ 0.034% between the EHR and their cor-
responding RHR. Therefore, it is more suitable for real-time
applications where the motion artifact is not considerable.
The weighted mean algorithm is employed to compute HR
for the aim of stress classification.

3.2 Results of Stress Classification

An example of filtered fNIRS signals averaged between chan-
nels is shown in Fig. 9. The applied filter is the band-pass filter
introduced in Sec. 2.5.1.1. The first five yellow parts and the
second five purple parts are related to the control and stress lev-
els, respectively. It is observed that there is a greater signal varia-
tion in the stress level.
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Fig. 8 An example of (blue) the averaged EHR and (red) RHR signals computed from the fourth

participant.
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Table 3 Quantitative comparison between the algorithms applied to the in vivo fNIRS signal.

Quantity S1 function S5 function AMPD M2D Weighted mean
Mean error (s) 0.028 + 0.004 0.028 + 0.003 0.029 + 0.004 0.030 + 0.004 0.018 = 0.004
SD error (s) 0.026 + 0.006 0.026 + 0.005 0.026 + 0.006 0.029 + 0.008 0.018 + 0.005
RMS error (s) 0.038 + 0.007 0.039 + 0.005 0.039 + 0.007 0.042 + 0.008 0.026 + 0.006
BAR (%) 6.925 + 1.293 7.056 = 1.067 6.961 + 1.214 7.989 + 2.451 4.934 =+ 1.841
Maximum error (s) 0.292 + 0.119 0.299 + 0.128 0.260 + 0.105 0.347 + 0.173 0.190 = 0.078
Mean of EHR and RHR (s) 0.739, 0.738 0.739, 0.738 0.739, 0.738 0.739, 0.738 0.737, 0.738
SD of EHR and RHR (s) 0.074, 0.067 0.074, 0.067 0.073, 0.067 0.073, 0.067 0.065, 0.067

Linear correlation (%) 86.225 + 0.054

85.922 + 0.054

85.051 + 0.047

83.892 + 0.047

92.254 x 0.034

Note: The best results for each metric is written in bold.
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Fig.9 Anexample of averaged fNIRS signals recorded from the fifth participant during the MIST. The first
five yellow parts are corresponding to the control level and the second five purple parts are related to the
stress level. The black, red, and blue curves are related to the total hemoglobin, oxyhemoglobin, and

deoxyhemoglobin signals, respectively.

The average of the EHR signal computed from to the same
participant and his RHR signal are shown in Fig. 10. The
Spearman linear correlation between the two signals is 97.98%.
As the previous figure, higher changes related to the stress level
in the HR trend are observed in this figure.

SVM (with RBF kernel function) and MLP (with conjugate
gradient optimization) classifiers and PCA and ICA feature con-
ditioning algorithms were used to classify the features extracted
from each of the fNIRS, EHR, and RHR measurements. For this
purpose, 75% of the data was considered as train data, 15% as
the validity data, and the remaining 15% as the test data. Since
the train, validity, and test data were randomly selected with a
uniform distribution, fNIRS and HR were categorized separately
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20 times in order to reduce the effect of random selection and the
variability of classification accuracy. The mean and standard
deviation of the classification accuracy obtained by each clas-
sifier are reported in Table 4.

The EHR features were classified using the SVM and MLP
classifiers with the accuracies of 92.6 & 1.1% and 93.9 & 1.3%,
respectively, which are more than the accuracy obtained by each
of the fNIRS and RHR features (Table 4). Applying the PCA
algorithm to the features extracted from the EHR, the stress
classification accuracy using the SVM and MLP classifiers
increased by 2% and decreased by 0.2%, respectively. The rea-
son for reducing the classification accuracy by MLP after apply-
ing the PCA is that the MLP classifier itself has a nonlinear PCA
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Fig. 10 An example of (blue) averaged EHR signal derived from the fifth participant in comparison with
his (red) corresponding RHR signal during the MIST. The first five yellow parts are corresponding to the
control level and the second five purple parts are related to the stress level.

Table 4 Results of stress classification using different classifiers constructed by SVM/MLP classifier, and PCA/ICA feature conditioning under

employing fNIRS, EHR, and RHR features.

Classifier SVM MLP
Data fNIRS EHR RHR fNIRS EHR RHR
Accuracy (%) without feature conditioning 788 + 2.4 92.6 + 1.1 62.2 = 10.1 724 £ 41 939+ 1.3 50.0 + 13.4
Accuracy (%) using PCA 771 £1.9 94.6x 0.9 56.1 £ 9.7 68.5 + 4.8 937+ 1.6 52.9 + 11.9
Accuracy (%) using ICA 77.2 + 3.1 944 + 0.8 54.3 + 9.6 711+ 3.3 94.3 + 2.2 51.7 + 12.8

Note: The best accuracy for each feature type and each classifier is written in bold.

in the first layer, and therefore it does not need the PCA feature
conditioning. Applying the ICA algorithm (the number of inde-
pendent components was obtained using the PCA algorithm) to
the features of EHR, stress classification accuracy using the
SVM and MLP classifiers was increased by 1.8% and 0.4%,
respectively. In total, the greatest stress classification accuracy
during the MIST was obtained using the EHR features, which
was classified by SVM classifier and PCA feature conditioning
with the accuracy of 94.4 + 0.8%. Considering both the fNIRS
and EHR features, the average classification accuracy by SVM
and MLP classifiers were calculated 91.3% and 88.1%, respec-
tively, and then having applied the PCA algorithm to these com-
bined features, the average accuracy reduced by 0.4% and
increased by 1.4%.

4 Discussion

This study investigated if the HR derived from the fNIRS signal
has the same efficiency as the HR derived from the ECG signal
in the mental stress assessment. The mental states of 10 healthy
male subjects during the MIST were assessed by EHR, RHR,
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and fNIRS measurements. ECG and fNIRS signals were
recorded simultaneously in order to measure the heart and
brain responses. Real-time peak detection algorithms were
employed including AMPD, M2D, S1 function, and S5 function
in order to compute the HR from the fNIRS signal. The
weighted mean algorithm was proposed to combine the perfor-
mance of these four algorithms. The time and frequency domain
features were extracted from the fNIRS, EHR, and RHR. They
were then classified using different classifiers and the results of
which are then compared to each other.

In the HR derivation from fNIRS signal, it was shown that
the weighted mean algorithm is more accurate compared to the
other four algorithms when applied to both simulation and in
vivo data. In simulation, the percentage of BAR calculated
for AMPD and weighted mean algorithms were 5.393% and
4.210%, respectively. In the case of real data, the percentages
of BAR calculated for AMPD and weighted mean algorithms
were 6.961 = 1.214 and 4.934 £ 1.841, respectively.

Correlation coefficients such as Pearson, Spearman, and
intraclass either measure the linear correlation or detect the
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agreement only according to the rank order between two vari-
ables. However, they are unable to detect additive or multipli-
cative bias. BAR is defined as an efficient way to quantify the
agreement between two measures. Agreements were ranked as
good when the percentage of BAR is lower than 10%.* In the
present study, in addition to the Spearman correlation coeffi-
cient, BAR has been used to verify the agreement between
EHR and RHR. The result of evaluation metrics used in this
study show that a high agreement (r > 0.9, BAR < 5%) was
quantified between the EHR and RHR, which is in accordance
with the previous studies.'s3447

Our results show that the EHR provides more effective
means for stress classification during the MIST compared to
the RHR and fNIRS in the sense of providing higher classifica-
tion accuracy. Using the features extracted from EHR, stress was
classified employing the combined SVM classifier and PCA fea-
ture conditioning with an accuracy of 94.4 + 0.8%, which was
15.6% and 32.2% greater than the accuracy obtained using fea-
tures extracted from fNIRS and RHR, respectively. Our stress
classification results are in accordance with those reported in
Ref. 47, in which EHR was compared to the HR derived from
the PPG signal under a physical stressor. However, in the present
study, a psychological stressor was induced, because it has
become much more prominent and pervasive with advances
in modern technologies and lives.™® ECG signal was employed
in this study to measure the reference HR, which is the gold
standard for investigating the HR.'® In addition, a quantitative
procedure was considered to assess the mental stress using
different classifiers.

The stress classification accuracy acquired by fNIRS features
in the present study is 5.35% lower than what was reported in
Ref. 4. In addition to the difference in the experiment procedure,
this lower accuracy might be resulted from our simple prepro-
cessing method for fNIRS signal. Fusing the features extracted
from the EHR and fNIRS using joint analysis techniques such as
joint independent component analysis®! and parallel indepen-
dent component analysis’ could be included in the future
analysis.

As an interesting point, a noticeable difference was observed
comparing the correlation values computed between the EHR
and the RHR measurements for different fNIRS channels
located at different positions over the PFC. The HR derived
from the lateral positions of PFC showed more correlation with
the corresponding reference HR. It can be concluded that blood
fluctuations in those regions are more correlated to the heart
beat. In contrast, the difference between the EHR and RHR mea-
surements over fNIRS channels in some regions can be due to
other physiological causes. We will further study this subject in
order to find these differences.

The compatibility of the HR derived from fNIRS signal
with the HR computed from ECG signal in the present study
is in accordance with the results reported in Refs. 18 and 34.
Derivation of the HR from fNIRS signal gives an opportunity
to use the HR measurement as a heart response besides or
in combination with the fNIRS signal which modulates the
brain activity by means of only one portable device. In addition
to the stress assessment, the EHR and fNIRS measurements can
be employed for applications in which both the brain and heart
are affected, including detection of the mental workload,>
BCL>* biofeedback,>~® and diagnosis of some diseases,”’ espe-
cially in children and infants because of eliminating the need
for additional HR sensors.”**
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5 Conclusion

fNIRS and ECG were recorded simultaneously in order to assess
the mental stress induced by the MIST. The present study indi-
cates that the EHR outperforms the RHR and fNIRS measure-
ments in the stress assessment. In particular, our results showed
that the stress was classified using the EHR features with the
accuracy which was 15.6% and 32.2% greater than those ob-
tained by the individual measurements of fNIRS and RHR,
respectively. This suggests that the EHR can be employed for
stress assessment as a compatible heart response besides or
in combination with the fNIRS signal by means of only one
portable device.
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