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Abstract

Significance: Raman spectroscopy (RS) applied to surgical guidance is attracting attention
among scientists in biomedical optics. Offering a computational platform for studying depth-
resolved RS and probing molecular specificity of different tissue layers is of crucial importance
to increase the precision of these techniques and facilitate their clinical adoption.

Aim: The aim of this work was to present a rigorous analysis of inelastic scattering depth
sampling and elucidate the relationship between sensing depth of the Raman effect and optical
properties of the tissue under interrogation.

Approach: A new Monte Carlo (MC) package was developed to simulate absorption, fluores-
cence, elastic, and inelastic scattering of light in tissue. The validity of the MC algorithm was
demonstrated by comparison with experimental Raman spectra in phantoms of known optical
properties using nylon and polydimethylsiloxane as Raman-active compounds. A series of MC
simulations were performed to study the effects of optical properties on Raman sensing depth for
an imaging geometry consistent with single-point detection using a handheld fiber optics probe
system.

Results: The MC code was used to estimate the Raman sensing depth of a handheld fiber optics
system. For absorption and reduced scattering coefficients of 0.001 and 1 mm−1, the sensing
depth varied from 105 to 225 μm for a range of Raman probabilities from 10−6 to 10−3.
Further, for a realistic Raman probability of 10−6, the sensing depth ranged between 10 and
600 μm for the range of absorption coefficients 0.001 to 1.4 mm−1 and reduced scattering coef-
ficients of 0.5 to 30 mm−1.

Conclusions: A spectroscopic MC light transport simulation platform was developed and
validated against experimental measurements in tissue phantoms and used to predict depth
sensing in tissue. It is hoped that the current package and reported results provide the research
community with an effective simulating tool to improve the development of clinical applications
of RS.
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1 Introduction

Raman spectroscopy (RS) has been under considerable investigation in biomedical optics during
the last several decades.1–7 Compared to more established biomedical probing and imaging tech-
niques [e.g., fluorescence imaging, magnetic resonance imaging (MRI), computed tomography
(CT), nuclear imaging], RS offers several advantages. It relies on nonionizing radiation; it can be
integrated into standard medical workflows because of its potential integration into compact fiber
optics systems; it can be either label-free or applied to image-specific targeted ligands; and fur-
thermore, it offers easy sample preparation and compatibility with aqueous solvents. However,
there are two major drawbacks to the application of label-free RS in biomedical optics. Because
of its low conversion rate, the Raman scattering cross section is weak compared to other light–
tissue interaction mechanisms, which makes Raman imaging a slow process. Moreover, Raman
scattering is more likely to occur in the Stokes regime where photons are redshifted, which
makes the Raman photon detection process prone to contamination by potentially large fluo-
rescence background from native biomolecules in tissue and cells.

Practical clinical applications of RS for tissue imaging (e.g., surgical guidance, targeted
biopsy collection, and treatment monitoring) were mostly developed using fiber optics systems
without regard to controlling tissue sensing depth. As a result, these approaches can be inher-
ently imprecise when used for surgical guidance or targeted biopsy collection. Moreover, ambi-
guities in tissue sampling depth make the whole process prone to modeling errors when using
pathology analysis to train predictive models based on supervised machine learning. Therefore,
deriving a rigorous relation between the Raman sensing depth for specific imaging systems and
tissue optical properties (absorption and elastic scattering) will be essential for the development
of real-world RS applications in medicine. More recently, advances were made in depth-resolved
techniques and developing spatial-offset Raman spectroscopy (SORS) with various types of
probes and optical setups to harvest Raman signals at depth.8–16 These innovative techniques
would also greatly benefit from robust simulation tools for modeling the depth sensitivity of RS.

Attaining a rigorous relation between Raman depth and optical properties in an RS system
requires solving the radiative transfer equation (RTE) and calculating photon diffusion with pre-
determined boundary conditions. Light transport simulations in tissue optics traditionally
involve modeling three competing interaction mechanisms: absorption and photon energy con-
version into heat (resonant phenomenon), fluorescence (resonant, but redshifted re-emission),
and elastic scattering (nonresonant).17,18 These phenomena can be modeled by analytically or
numerically solving the RTE; this can be simplified to the diffusion equation (P1 approximation)
or to the simplified spherical harmonics equation (SPN approximation) in highly scattering
media. However, these analytical/numerical approaches are limited when modeling complex
imaging domains with realistic heterogeneities or curved geometries.

Biological tissue can be approximated as a random medium in which light is mainly diffused
by going through many scattering incidents. This problem is either analytically impossible to
solve for realistic imaging configurations or it can be computationally intensive in numerical
simulations to account for absorption, elastic scattering, and fluorescence. An alternative to the
analytical/numerical studies is the Monte Carlo (MC) method, which was proposed for the first
time by Wilson and Adam19 and improved by several groups20–22 to solve the problem of light
transport in tissue. Due to its stochastic nature, MC is essentially capable of dealing with any
level of complexity concerning optical or geometrical properties in the RTE, as long as appro-
priate computational platform (hardware and software) is provided. The advent of strong micro-
processors boosted with modern graphical processing units (GPU) accompanied by robust
parallelization algorithms in recent years have paved the road for MC to produce rigorous and
reliable solutions to light transport in tissue. In MC simulations, photons undergo sequential
random walks and, during each step, the corresponding optical parameters (absorption, elastic
scattering, fluorescence, and Raman scattering) can be randomly sampled to decide which of the
four competing events happens along the walk.

In this article, a new MC package is introduced that can simulate elastic and inelastic scatter-
ing of photons in biological tissue. First, a review of the previously reported work on MC analy-
sis of photon transport is provided and the advantages of the package presented in this article are
highlighted. Then, the stochastic analysis methodology of elastic and inelastic diffusion of
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photons is presented. To validate the new package, simulation results in realistic tissue phantoms
are presented and compared with those of experimental phantoms of known absorption and scat-
tering coefficients. Detailed Raman sampling depth analysis is then presented to establish rela-
tionships between sensing depth, tissue optical properties, and imaging geometry parameters.
This work sets the stage for the development of more controlled experimental protocols leading
to the clinical translation of RS systems into medical applications.

2 Monte Carlo Simulation Strategy

2.1 Overview of MC Simulators in Biomedical Optics

Various MC algorithms have been implemented to stochastically solve the RTE and study light
transport in turbid media, including biological tissue. Monte Carlo Multi-Layered (MCML) was
the first MC package developed by Wang et al.23 in standard C language to model photon dif-
fusion in layered tissue. MCML initially had two limitations: the first was its long computational
time, which could take many hours for a single simulation, and the second was its restriction to
model only layered geometries and its inability to simulate nonlayered structures. Concurrent
with MCML, Wang et al.24 released convolutional MCML (CONV MCML) to simulate the
interaction between a finite-width light beam and multilayered tissues. The advent of more
powerful computational methods as well as the development of multicanonical MC simulators25

helped to overcome the first drawback of MCML. Hybrid models were also introduced to model
light transport in more complex geometries, allowing inclusion of simple geometrical shapes
such as cuboids, spheres, and cylinders in layered structures.26,27 Among the reported results
obtained from the hybrid models were MC study of optimized light delivery for tumor laser
treatment,28 MC modeling of light delivery and focusing in tissue with blood vessels, arteries,
and capillaries,29–31 MC analysis of photoacoustic imaging of sentinel lymph nodes,32 MC study
of near-infrared (NIR) light propagation within adult and neonatal head models,33 and grid-based
modeling of skin under laser irradiation.34 In recent decades, the hybrid models were superseded
by more versatile techniques such as CUDAMCML,35 mesh-based MC,36 MC eXtreme,37 tetra-
hedron-based inhomogeneous MC optical simulator,38 and voxel-based MC.39

In addition to the traditional MC simulation techniques, where mainly elastic scattering and
absorption of light in tissue are modeled, a substantial number of MC studies investigating
fluorescence40–51 and the Raman effect52–62 in turbid media have been reported. Modification
of the primary MC approaches incorporating the quantum yield and emission spectra of specific
fluorophores were used to stochastically model fluorescence in scattering and absorbing
media.40–45 In two consecutive papers,46,47 MC simulations were applied to empirically model
the fluence rate and fluorescence re-emission as a function of effective penetration depth and
diffuse reflectance. Beuthan et al.48 showed that C21H27N7O14P2 (NADH) concentration in tur-
bid media can be estimated through simultaneous detection of fluorescence and light backscat-
tering. This work was extended by Minet et al.49 to estimate the concentration of NIR
fluorophores. In another work, a fast Fourier method and scaled fitting procedures were used
to improve the speed and accuracy of the MC simulations in reconstructing the fluorescence
spectra.50,51

A deficiency of existing MC tools is that they are unable to simultaneously account for all
tissue optics competing mechanisms, including not only absorption/elastic scattering and fluo-
rescence, but also nonelastic scattering, i.e., the Raman effect. Enejder et al.52 used an MC
method to model the Raman-scattered light within blood samples in a quartz cuvette and quan-
tified the analytes in whole blood. A semi-analytical study facilitated by an MC simulation on
infinite and finite single-layer media to correct the turbidity-induced distortions in Raman spec-
tra was presented by Shih et al.53. Mo et al.54 presented an optical fiber Raman probe coupled
with a ball lens and developed an MC simulation to study the depth-resolved Raman signal
collected from a two-layer epithelial tissue. Hokr and Yakovlev55 developed an MC model
to consider elastic scattering, absorption, and spontaneous Raman scattering in a turbid medium
and they showed that an enhancement in elastic scattering leads to the growth of forward and
backward Raman signals. However, due to the extensive computational costs of the proposed
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MC model, the authors chose artificially large values (on the order of 10−2) for the effective
Raman cross section and made the assumption that the laser pump depletion is negligible, which
may hinder the given conclusion in realistic inelastic scattering light–tissue interaction measure-
ments. An MC approach for calculating the depth sensitivity of single-fiber and multi-fiber
Raman probes interrogating skin was presented by Reble et al.56. Modeling skin as a two-layer
geometry with a finite epidermis layer backed by a semi-infinite dermis layer, the authors dem-
onstrated that skin with nonmelanoma cancer reveals higher sampling depth compared to normal
skin. In 2014, two groups separately developed MC simulations with Raman modeling capa-
bilities. Wang et al.57 built an eight-layer skin model and performed an MC calculation to study
how different layers affect the measured in vivo Raman spectrum. Hokr et al.58 presented a model
based on the MCML package and investigated the stimulated Raman scattering and nonlinear
dynamics of light in turbid media. Both the proposed models were, however, limited to layered
structures, which limits their applications for more complex geometries. Periyasamy et al.59,60

presented Raman MC simulations based on the MCML package with embedded objects with
spherical, cuboidal, ellipsoidal, and cylindrical shapes in layered structures. MC calculations
were also conducted to analyze SORS systems.16,61,62

All the cited studies on the use of MC methods to analyze Raman scattering are either limited
to layered structures with simple embedded shapes or suffer from a high computational cost in
simulating Raman photons. The work presented here overcomes those difficulties by enabling
rapid GPU-boosted simulation of all four competing mechanisms, including the Raman phe-
nomenon, in turbid tissues with any arbitrary geometry or optical properties over any desired
spectral range. The availability of this tool is important as it will highlight the roadmap toward
the fabrication of more realistic optical phantoms, determine the Raman depth sensitivity across
all possible tissue parameters, and make a quantitative assessment of expected levels of Raman
signal-to-noise ratio (SNR), which is dramatically impacted by the relatively high levels of fluo-
rescence and heterogeneity of biological tissues.

2.2 New MC Simulator and Its Advantages Over Currently Available
Methods

In this section, a newly developed MC package is presented for simulating elastic and inelastic
tissue light scattering. The current MC package was developed based on parallelization of the
algorithm on graphics cards, which is obtained using the Open Graphics Library (OpenGL).63

Compared to other published Raman simulators, the developed package offers several important
features that are emphasized here.

First, a marching cube algorithm facilitated by several shaders from the OpenGL shading
language was used in the implementation of the medium that allows robust rendering of
three-dimensional (3-D) curved geometries with locally refined structures that may contain
multiple inclusions of different optical properties. In generating the geometries, the voxelated
3-D objects are saved in stack of two-dimensional (2-D) images and the marching cube algo-
rithm performs the divide-and-conquer approach to extract isosurfaces (3-D regions with iden-
tical optical properties). More details on the applied marching cube algorithm can be found in
Refs. 63 and 64. Second, the package was developed essentially by incorporating several shaders
of OpenGL, including vertex shaders, fragment shaders, and geometry shaders. By means of
these shaders, all the MC calculations regarding light transport, processing the initial and final
positions, directions, and wavelengths of photons, reflection and refraction of photons, geometry
rendering, as well as camera/sensor implementation are performed on the GPU. Consequently,
the running time of each simulation is shorter compared to CPU-based packages. Furthermore,
due to the flexibility of OpenGL and its compatibility with many graphic cards, the developed
package does not require a very specific architecture and can be run on any computer with a
graphic processor supporting OpenGL 4.1 or above. Thus, significant benefit in portability,
implementation, and maintenance of the package is brought forth. Third, the package parallel
implementation is robust and dynamic such that the wavelength shift of photons, due to inelastic
scattering and fluorescence events, and their diffusion at the shifted wavelengths can be simu-
lated concurrently with the propagation of photons at the launching wavelength. Therefore, the
MC package is capable of simulating both fluorescence and Raman spectra, i.e., phenomena at
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multiple wavelengths. Fourth, the demonstrated package offers easy access to information
regarding the final location and direction of photons, their final wavelengths, as well as the
locations where inelastic scattering, fluorescence, or absorption events occurred. Having access
to this information provides users with the ability to perform various types of post-processing
analysis, such as spatial or temporal filtering. Fifth, the package allows for inputs from structural
imaging modalities such as MR and CT, which allows simulations in realistic situations through
different organs and within contrast-enhancing tumors. Sixth, the MC simulator provides the
user with several light source and sensor options. For illumination, different types of sources
such as point source, wide field source with the Gaussian profile, and patterned illumination for
spatial frequency-domain imaging can be modeled. The detection features include single-point
fiber optics detection and wide-field camera-based detection.

2.3 Stochastic Modeling of Light–Tissue Interaction and Random Variables

In a turbid medium, photons are traveling random paths composed of a sequence of straight
segments. Each path can be interrupted by one of the following four phenomena: elastic scatter-
ing (Rayleigh or Mie), absorption, fluorescence, or inelastic (Raman) scattering. To include each
of these events in the MC analysis, their respective phenomenological physical constants are
used to build a probability density function (PDF) and hence, sample random numbers. For
elastic scattering, the scattering coefficient μs represents the scattering probability per unit dis-
tance along each photon trajectory. Based on a modified version of the Beer–Lambert law, the
PDF and cumulative distribution function (CDF) for elastic scattering are defined as follows:18

EQ-TARGET;temp:intralink-;e001;116;471fsðx; μsÞ ¼ μse−μsx; (1)

EQ-TARGET;temp:intralink-;e002;116;428Fsðl; μsÞ ¼
Zl

0

μse−μsxdx ¼ 1 − μse−μsl: (2)

The function Fs is the CDF, which represents the probability that a photon has gone through a
scattering event after having traveled a distance l. Then for the length of the photon path between
two diffusion events (ldiff ), a random number ξ1, between 0 and 1, is generated and following the
elastic scattering CDF, we have

EQ-TARGET;temp:intralink-;e003;116;342ξ1 ¼ 1 − μse−μsldiff ; (3)

which gives

EQ-TARGET;temp:intralink-;e004;116;298ldiff ¼ −
1

μs
ln

�
1 − ξ1
μs

�
: (4)

In addition to the diffusion length, the direction of elastic scattering is determined from the
phase function, which is essentially the angular probability density of a photon coming from
solid angle direction Ω being scattered into direction Ω 0, i.e., pðΩ;Ω 0Þ. For the case of unpo-
larized light, the probability of scattering is equally distributed for all the angles in the azimuthal
plane, i.e., pϕðϕÞ ¼ ϕ∕2π and hence pðΩ;Ω 0Þ ¼ pðΩ · Ω 0Þ ¼ pðcos θÞ. To determine the azi-
muthal direction of the scattering, a random number ξ2, distributed uniformly between 0 and 1, is
generated and the azimuthal direction of scattering is obtained as ϕ ¼ 2πξ2. Then, by assigning
the Henyey–Greenstein phase function17,18 to pðcos θÞ, the CDF of the scattering angle in the
polar plane is

EQ-TARGET;temp:intralink-;e005;116;144Pθðcos θÞ ¼
1

2

Zcos θ

−1

pðcos θÞdðcos θÞ: (5)

By letting PθðθÞ ¼ ξ3, where ξ3 is distributed between 0 and 1, the scattering orientation along
the polar plane is, thus,
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EQ-TARGET;temp:intralink-;e006;116;735θ ¼ arccos

�
1

2g

�
1þ g2 −

�
1 −

g2

1 − gþ 2gξ3

�
2
��

; (6)

where g is the anisotropy coefficient.
The absorption coefficient μa specifies the probability of absorption per unit distance traveled

by a photon with corresponding CDF,

EQ-TARGET;temp:intralink-;e007;116;663Faðl; μaÞ ¼
Zl

0

μae−μaxdx ¼ 1 − μae−μal; (7)

which indicates the probability that an absorption event occurs within a traveled distance l. Some
MC approaches maintain a packet weight index for each photon, which is decreased by absorp-
tion during the photon travel.18 Here, the “intensity” of the photons is unaltered along their paths
and they are considered as quantized (albeit nonpolarized) particles. Absorption is considered on
the same footing as the other interaction mechanisms with the probability of photon survival
based on the Russian roulette mechanism. The random number of the roulette wheel is compared
with Faðl; μaÞ to determine whether the photon survives or annihilates at a given iteration. The
survival condition of a photon is, therefore, determined by the following expression:

EQ-TARGET;temp:intralink-;e008;116;512survival∶ξ4 < Faðl; μaÞ; (8)

where ξ4 is a random number between 0 and 1.
The probabilities of Raman scattering or fluorescence re-emission are related to the molecu-

lar structure of the biological tissue and can be modeled by their emission spectra. If the re-
emission bandwidth of interest is ½λa; λ� and the wavelength of illumination is λi, the fluorescence
and Raman CDFs, which are specifying the probability of fluorescence or Raman shifts from λi
to λ, are

EQ-TARGET;temp:intralink-;e009;116;409FFðλi; λÞ ¼
Zλ

λa

fFðλi; λ 0Þdλ 0; (9)

EQ-TARGET;temp:intralink-;e010;116;338FRðλi; λÞ ¼
Zλ

λa

fRðλi; λ 0Þdλ 0; (10)

where fFðλi; λÞ and fRðλi; λÞ are the conversion rates of fluorescence and Raman events, which
are essentially proportional to their re-emission spectra. This is because if we consider fluores-
cence and Raman scattering as absorption/re-emission and scattering phenomena, respectively,
then the re-emission intensities in fluorescence and scattering intensity in Raman scattering are
directly proportional to the corresponding fluorescence quantum yield and Raman cross section,
respectively. These two intensities are, in fact, the inherent fluorescence and Raman spectra of
medium under interrogation. It should be noted that in the current package, the CDFs defined in
Eqs. (9) and (10) are indicated by ρF and ρR, respectively. To decide whether, on each diffusion
path, the inelastic scattering or fluorescence re-emission occurs or not, the MC package uses
Eqs. (9) and (10) to calculate ρF and ρR for all the wavelengths of interest. Then it produces
two random numbers, ξ5 and ξ6, and compares them with all the calculated ρF and ρR. If the
produced random numbers are smaller than the CDF value of a particular wavelength, then that
wavelength will be chosen as the inelastic wavelength. If multiple wavelengths have their CDF
values larger than the generated random numbers, then the shortest wavelength among them will
be chosen. If the generated random numbers exceed all the CDF values of the considered wave-
lengths, then the diffusion would be elastic.

Finally, the reflection and refraction of photons at the interface of two layers are computed
using the Fresnel coefficients. If the photon encounters an interface between two layers with
refractive indices n1 and n2, then the package generates a random number ξ7, between 0 and
1, and compares it with the reflectance of the interface, given by the following Fresnel relation:18

Akbarzadeh et al.: Experimental validation of a spectroscopic. . .

Journal of Biomedical Optics 105002-6 October 2020 • Vol. 25(10)



EQ-TARGET;temp:intralink-;e011;116;735R ¼ 1

2

��
n1 cos θ1 − n2 cos θ2
n1 cos θ1 þ n2 cos θ2

�
2

þ
�
n1 cos θ2 − n2 cos θ1
n1 cos θ2 þ n2 cos θ1

�
2
�
; (11)

where θ1 is the angle of incidence and θ2 is the angle of transmittance. In Eq. (11), R is the
average reflectance for the two orthogonal polarizations of light, for in the current context
of interest, we have assumed that light is unpolarized. Therefore, if ξ7 is smaller than R, then
the photon is reflected, otherwise it is transmitted.

2.4 Algorithm Managing Light–Tissue Interaction Events

Implementation details of the MC algorithm are shown in Fig. 1. To simulate elastic scattering,
absorption, fluorescence, or Raman scattering, their respective physical constants are used to
build pertinent PDFs and hence, sample random numbers. At the start of each step, the devised
algorithm samples seven different random numbers, i.e., ξ1 to ξ7 as summarized in Table 1,
corresponding to the length of diffusion step, azimuthal and polar directions of the diffusing
photon, probabilities of absorption, florescence, and Raman scattering, and specular reflection
if the next diffusion increment crosses a boundary between two media. Then, the algorithm takes
the generated random numbers into account and follows survival tests for each of the above-
mentioned events to decide which event dominates at that step.

More specifically, after launching photons, the package first checks if there is any Raman
shift. If there is a Raman shift, it updates the wavelength and optical properties of the medium

Fig. 1 Proposed MC algorithm including all the competing events in light–tissue interaction.

Table 1 Generated random numbers.

Name Variable Corresponding equation

Diffusion free path ldiff ldiff ¼ − ln½ð1 − ξ1Þ∕μs �∕μs
Azimuthal direction of diffusion ϕ ϕ ¼ 2πξ2

Polar direction of diffusion θ θ ¼ arccos
n

1
2g ½1þ g2 −

�
1 − g2

1−gþ2gξ3

	
2�
o

Russian Roulette ξ4 ξ4 > 1 − e−μaldiff

Probability of fluorescence shift ξ5 ξ5 > ρF ðλÞ

Probability of Raman shift ξ6 ξ6 > ρRðλÞ

Probability of reflection at a surface R ξ7 < R
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and then computes the diffusion length [Eq. (4)] as well as azimuthal (ϕ ¼ 2πξ2) and polar
[Eq. (6)] directions, respectively. If there is no Raman shift, the package computes the diffusion
length, azimuthal, and polar directions based on the optical properties at the wavelength of illu-
mination. Then, the simulator checks if there is any change of interface along the diffusion seg-
ment and in the direction of the initial ϕ and θ. If there is an interface on the way, then the photon
is either transmitted or reflected based on the Fresnel laws, and accordingly, the azimuthal and
polar directions of subsequent diffusion (ϕ and θ) are updated. If there is no interface, then the
photon travels along the path determined by ldiff and the initial ϕ and θ. At the next step, the
photon undergoes the Russian roulette process and competes with absorption. If there is no
absorption, the algorithm goes back to the step of Raman shift checking. If there is an absorption
event, then the algorithm checks whether the photon is annihilated or undergoes fluorescence re-
emission. In the case of annihilation, the package launches a new photon. In the case of fluo-
rescence re-emission, the algorithm updates the angles ϕ and θ, as fluorescence is assumed to be
an isotropic process. Furthermore, the algorithm checks if the fluorescence re-emission is at the
initial wavelength or not (second last box in Fig. 1). If yes, then the package returns to the Raman
shift inspection step. If no, the package updates the wavelength and optical properties for the new
wavelength, and then jumps back to the Raman shift inspection step. It should be mentioned that
the launched photons can repeatedly go through the described algorithm in a number of iterations
set initially by the user. If before reaching the maximum number of iterations, the photon is
absorbed and not re-emitted, then that whole sequence is terminated, and a new photon is gen-
erated. Furthermore, the simulation domain is considered as a void (i.e., vacuum) space where all
the modeled structures are contained. Hence, the exiting photons propagate along straight lines
without experiencing any scattering or absorption in the surrounding void medium. More details
on the technical implementation of the MC algorithm based on OpenGL can be found in Ref. 63.

2.5 Physical Environment Modeling

The optical properties (μs, μa, g, n, ρF, and ρR) of the simulated medium need to be defined at
any point in space for all the wavelengths. As is a convention in the diffuse optics literature,
empirical relations for μs, g, and n are used, although the code can be adapted to be compatible
with the tabulated values for these constants. In the spectral therapeutic and imaging window for
biological media, the dependence of the scattering coefficient on wavelength can be empirically
described by a decreasing power law. Thus, the scattering is represented by an exponential equa-
tion with coefficient a1 and power a2

EQ-TARGET;temp:intralink-;e012;116;327μsðλÞ ¼ a1λ−a2 ; (12)

where a1 and a2 are positive real numbers. The anisotropy coefficient g and refractive index n
exhibit more linear behaviors

EQ-TARGET;temp:intralink-;e013;116;272gðλÞ ¼ a3 þ a4λ; (13)

EQ-TARGET;temp:intralink-;e014;116;229nðλÞ ¼ a5 þ a6λ: (14)

The dependence of absorption, fluorescence, and Raman scattering (μa, ρF, and ρR) on wave-
length cannot be modeled empirically. For this reason, the package should be provided with the
values of these properties at each wavelength, adapted to any desired biological application.

The MC simulation package allows flexibility in defining the illumination and detection
geometries. The light sources are represented according to their position, direction, intensity
(in terms of number of photons), radius, distribution (standard deviation), and emission wave-
length. Thus, a monochromatic source having a Gaussian emission profile is represented only by
10 numbers. In addition, more than one source can be modeled simultaneously by adding a
supplemental definition in an input file. Thus, it is possible to model a source containing several
wavelengths by superimposing several sources in the file. The source radius defines the boun-
dary beyond which no photon is emitted, which makes the simulator suitable for optical fiber
sources. The cameras and sensors used in biophysics are diverse. For this reason, it is important
to leave enough flexibility at the detection port. In the current version of the MC package, the
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pinhole camera is supported with the generic parameters tabulated in Table 2. Allowing the user
to control these parameters, the simulator offers a solution adaptable to a wide variety of appli-
cations. Furthermore, in order to implement new sensors and cameras, the package allows the
user to insert the corresponding camera matrix of the new sensing system and apply it to the
captured photons.

3 Experimental Validation of the Simulation Technique

In this section, experimental measurements made in tissue phantoms using a single-point RS
probe are compared with simulation results for the same geometry in synthetic phantoms in
order to validate the practical utility of the new MC simulation technique.

3.1 Experimental Tissue Phantoms

Solid tissue phantoms were fabricated from polydimethylsiloxane (PDMS) and nylon matrices.
The absorption and scattering properties of the phantoms were controlled by adding India ink for
absorption and titanium dioxide (TiO2) powder for scattering.65,66 PDMS and nylon were chosen
in part because they have Raman signatures allowing them to be clearly distinguishable. Three
phantoms were fabricated [Fig. 2(a)]: (I) a single layer of PDMS (thickness: 10 mm) with
absorption and scattering agents, (II) a single layer of nylon (thickness: 10 mm) with absorption
and scattering agents, and (III) a two-layer phantom made of a substrate of nylon layer (thick-
ness: 10 mm) over which a 913-μm layer of PDMS was deposited. The thickness of the PDMS
layer in phantom III was measured using a commercial optical coherence tomography (OCT)
system (Thorlabs SL1310V1).67 The axial resolution of the system was estimated to be 20 μm in
air. Two OCT B-scans were acquired by rotating the sample by 90 deg around the z axis normal

Table 2 Generic parameters of the camera/sensor imple-
mented in the package.

Parameter Representation space

Position ðX;Y ; Z Þ

Orientation ðX;Y ; Z Þ

Resolution ðX; Y Þ

Field of view (Near plane, far plane, angle of view)

Fig. 2 (a) Structural geometry of phantoms I (PDMS), II (nylon), and III (PDMS on the top nylon
with d ¼ 913 μm). Measured (b) absorption and (c) reduced scattering coefficients of nylon and
synthetized PDMS samples.
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to the cross section of the sample; one along x̂ direction and one along ŷ direction. The PDMS
thickness was determined to be uniform (�10 μm) and 913-μm thick over the 3.71-mm width of
the B-scans.

Characterization studies were then conducted to determine the absorption coefficient (μa) and
reduced scattering coefficient [μ 0

s ¼ ð1 − gÞμs] of the single-layer phantoms. Specifically, reflec-
tion and transmission spectra were acquired using a commercial PerkinElmer Lambda 1050
spectrometer equipped with a single integration sphere. The optical properties were computed
using the Inverse Adding Doubling technique.68 Figure 2(b) shows the absorption coefficients
and Fig. 2(c) shows the reduced scattering coefficients of PMDS and nylon phantoms, respec-
tively. The optical properties are consistent with biological tissue in the NIR window. For the
PDMS phantom, μa ranges from 0.11 to 0.075 mm−1 and μ 0

s varies from 0.65 to 0.45 mm−1

between 500 and 1000 nm. For the nylon phantom, μa changes from 0.02 to 0.01 mm−1 and
μ 0
s fluctuates from 1.05 to 0.25 mm−1 within the wavelength range 500 to 1000 nm.

3.2 Experimental Raman Spectroscopy Measurements

Fluorescence and Raman scattering spectra were measured with a handheld RS probe in contact
with phantoms I, II, and III. All Raman acquisitions (500-μm spot size) consisted of 10 con-
secutive spectra acquired following excitation with a 785-nm light source (25 mWat the tip, 1-s
exposure per spectrum).6,10,69,70 The raw signals were processed to isolate the contribution asso-
ciated with the Raman effect: (1) the background signal (measurement acquired with laser turned
off) was subtracted and the resulting spectrum corrected for system response by normalizing it to
a measurement made on a Raman standard (SRM2241; NIST, Gaithersburg, Maryland);71 (2) the
remaining low-frequency background (mainly fluorescence) was removed using the rolling ball
algorithm;72 and (3) the spectrum was normalized with standard normal variate (SNV) technique
to have a mean of zero and standard deviation of one. Figure 3 shows the post-processed spectra

Fig. 3 Simulated versus measured fluorescence and Raman spectra of (a), (b) phantom I, (c),
(d) phantom II, and (e), (f) phantom III, respectively.
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for each phantom. All expected Raman peaks for PDMS and nylon were detected as seen in
Figs. 3(b) and 3(d), respectively. The measured Raman spectrum for the two-layer phantom
[Fig. 3(f)] shows all peaks associated with the top PDMS layer and several peaks associated
with nylon in the higher wavelength range above 800 nm.

3.3 Monte Carlo Simulations

An MC light transport protocol was developed [Fig. 4(d)] to run simulations consistent with the
illumination/detection geometry of the handheld single-point RS probe as well as with the geom-
etry and optical properties of phantoms I, II, and III (Fig. 2). Figures 4(a)–4(c) show the cross-
sectional and side views of the simulated source and detector configurations. The detection area
was approximated by a cylinder of 600-μm diameter surrounding the illumination area modeled
by a 400-μm diameter disk. The acceptance angles (numerical apertures) for illumination and
detection were 8 deg and 30 deg, respectively.

Three-dimensional (3-D) grids of voxels were generated to emulate the geometry of the phan-
toms: 256 × 256 × 256 for the single-layer phantoms I and II and 501 × 501 × 203 for the two-
layer phantom III. Optical properties parameters were assigned to each voxel to match conditions
met in the experimental tissue phantoms. Those included a refractive index of n ¼ 1.4 and the
measured absorption and reduced scattering coefficients reported in Fig. 2. The measured back-
ground (the residual after applying the rolling ball algorithm) and resulting Raman spectra of the
single-layer PDMS and nylon were used to assign relative probabilities at each voxel associated
with the fluorescence and Raman scattering processes, respectively. As noted while presenting
Eq. (10), the fluorescence and Raman conversion probabilities are proportional to their corre-
sponding spectra of re-emission and scattering, respectively. Accordingly, the acquired spectra
from single layer PDMS and nylon were multiplied by a proportionality constant and used as
probability conversion rates (ρF and ρR) in the CDF manner at 100 discrete wavelengths equally
distributed between 810 and 932 nm. Tissue excitation was modeled by a monochromatic point
source with an excitation wavelength of 785 nm. All simulations were performed on a DELL
Precision 7920 Tower workstation with an 8 core Intel Xeon Silver 4110 microprocessor
(2.1 GHz, 3.0 GHz Turbo), an NVIDIA Quadro P4000 graphic card, and OpenGL 4.5. As illus-
trated in Fig. 4(d), a total of 7.2 × 108 photons in 3600 batches were launched onto the center of
the top face for each phantom to simulate Raman scattering and fluorescence re-emission at 100
discrete wavelengths equally spaced between 810 and 932 nm. The required time for the MC
simulating and subsequent post-processing calculations were 5.5 and 4 s per batch, respectively.
The source was approximated as a Gaussian distribution with standard deviation of 0.1 μm. A
post-processing analysis was applied at the detection end to count the Raman photons collected
within the aperture of the detectors.

The simulations for each phantom resulted in spectra that were post-processed using the same
background removal technique as for the experimental spectra. Figures 3(a), 3(b) and 3(c), 3(d)

Fig. 4 (a) Cross-sectional view of the handheld interrogating probe. The red region with a diam-
eter of 400 μm indicates the source port, while the green region with a diameter of 600 μm illus-
trates the collecting port. (b) Side-view of the detector geometry. (c) Side-view of source geometry.
(d) Elastic and inelastic photon diffusion in a two-layered sample under illumination of a light beam.
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show the SNV-normalized experimental and simulated spectra for the pure PDMS and nylon
phantoms, respectively. The post-processed simulated and experimental spectra are in agree-
ment, preliminarily demonstrating the efficacy of the method to simulate inelastic Raman scat-
tering in a diffusive medium. Figures 3(e) and 3(f) show the simulated and experimental results
for the two-layer phantom, respectively. The two spectra show overall good agreement with
minor differences between the measured and simulated curves at longer wavenumber shifts,
where most Raman nylon peaks of the nylon substrate are located.

4 Inelastic Scattering Sampling Depth

4.1 Simulation Geometry and Depth Sensing Evaluation Metrics

A comprehensive study of the effects of absorption, elastic, and inelastic scattering on the depth
of Raman conversion was conducted. Because of light diffusion in tissue, each optical meas-
urement was associated with a distribution of photons having sampled different sensing depths.
From the Beer–Lambert law, the fraction of detected photons having sampled a given depth d
exponentially decreases with depth. In the analysis presented here, Raman sensing depth is
defined as the depth after which a specific cumulative percentage of detected Raman photons
was scattered. To ensure that the detected signals represented a realistic sensing depth, two val-
ues were computed as references. Specifically, depth sensing values were computed associated
with the depths after which 75% or 90% of all Raman photons were generated in the face of all
other competing interaction mechanisms.

To conduct the Raman depth sampling analysis, a series of MC simulations were done. In
each simulation, the in silico phantom was first assumed to be a semi-infinite space (i.e., z < 0).
The illuminating source was modeled by a monochromatic point source (λ ¼ 785 nm), which
had a Gaussian radial distribution with a standard deviation of 0.1 μm and was located at the
center of the top face of the phantom. However, to minimize computational time and required
memory, the simulated phantom was approximated as a slab of 2 × 2 × 2 cm3, which was mod-
eled by a 3-D grid composed of 256 × 256 × 256 voxels. For each simulation, 6 × 107 photons

in 300 batches were launched, where the required time for the MC simulation and subsequent
post-processing analysis were 5.5 and 4 s per batch, respectively. As for the collection part, a
post-processing analysis was performed to count the Raman photons collected by an aperture
identical to the detector in Fig. 4.

4.2 Impact of Inelastic Scattering Conversion Rate on Raman Depth
Sampling

The effect of the Raman conversion rate ρR on the Raman depth was first studied. Figure 5(a)
shows the cumulative percentage of detected Raman photons versus the Raman penetration
depth for a phantom with μ 0

s ¼ 1 mm−1 and μa ¼ 0.001mm−1, and Raman conversion rate
ρR varying between 10−6 and 10−3. As observed in this figure, increasing the Raman conversion
rate increases the slopes of the curves, which indicates that the Raman depth is approximately
inversely proportional to the conversion rate. This relation is more clearly visible in Fig. 5(b),
where the 75% and 90% Raman depths are plotted for various conversion rate values. It is
observed that as the Raman conversion rate increases, most of the propagating photons undergo
a Raman shift within shallower layers.

4.3 Impact of Absorption and Elastic Scattering on Raman Depth Sampling

The effects of absorption and elastic scattering on Raman sensing depth are illustrated in Figs. 6
and 7. Figure 6(a) shows the photon intensity curves for μ 0

s ¼ 1 mm−1 and various absorption
coefficients. In this figure, it is shown that for a highly absorptive medium (μa ¼ 0.1 mm−1), the
slope of the cumulative captured photon intensity curve is larger compared to those with lower
absorption coefficients, indicating shallower Raman sensing depths for more absorptive media.
Figure 6(b) shows the photon intensity curves for a higher scattering coefficient of 10 mm−1 and
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Fig. 6 Cumulative percentage of detected photons versus penetration depth for various absorp-
tion coefficients of a phantom with ρR ¼ 10−5 and (a) μ 0

s ¼ 1 mm−1, (b) μ 0
s ¼ 10 mm−1.

Fig. 5 (a) Cumulative percentage of detected Raman photon versus penetration depth for various
Raman conversion rates within a phantom with μ 0

s ¼ 1 mm−1 and μa ¼ 0.001 mm−1. (b) 75% and
90% Raman depths versus conversion rate.

Fig. 7 (a) and (c) 75% and 90% Raman depth versus absorption coefficient for various μ 0
s and

ρR ¼ 10−6. (b) and (d) 75% and 90%Raman depths versus scattering coefficient for various μa and
ρR ¼ 10−6.
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varying absorption coefficients. For the higher scattering coefficient, all the intensity curves
become much sharper, indicating much shallower Raman sensing depths for more scattering
media. This indicates the dominance of elastic scattering event on the depth of Raman re-
emission. These two facts are more visible in Fig. 7, where the 75% and 90% Raman sensing
depths are traced versus the reduced scattering and absorption coefficients, respectively.
Comparing Figs. 7(a), 7(c) and 7(b), 7(d) reveals that the effect of absorption coefficient on
the Raman sensing depth is less significant than that of the scattering coefficient. According
to these figures, for a constant μ 0

s value, increasing μa results in a smaller decrease in the
75% and 90% Raman sensing depth compared to the depth decrease observed by increasing
μ 0
s for a fixed μa value. Furthermore, as μ 0

s grows, the 75% and 90% Raman depth curves versus
μa become flatter, which indicates that the Raman sensing depth is less influenced by the absorp-
tion in media with stronger scattering coefficients. In other words, for higher amounts of μ 0

s, the
Raman sensing depth curves versus μa behave like parallel lines, which shows that for stronger
scattering coefficients, the amount of change in the sensing depth is progressively independent of
μa. Finally, as can be seen in Figs. 7(a) and 7(c), the blue curves are not following the general
expected behavior at the last two points, where kinks appear. This is due to the fact that, at such
points, the absorption coefficient is much larger than the reduced scattering coefficient, and
hence, estimating the photon paths and fluence rate is out of the realm of the diffusion equation.
Nevertheless, such extreme values for absorption and reduced scattering coefficients are rarely
seen in biological tissues.

5 Discussion

Prior to being used in human subjects, optical imaging instruments should undergo an iterative
design procedure facilitated by tissue phantoms with realistic geometrical and optical properties
such that a reliable assessment of the imaging performance and utility can be obtained. In this
regard, the optimized system-specific parameters can be estimated by optical simulation of the
designed imaging instrument, e.g., by detailed ray tracing analysis of included optical compo-
nents as well as their arrangements. Tissue-specific technical features are usually estimated based
on tissue phantom experiments,73 which model a range of optical properties representing the
expected inter- and intrapatient heterogeneity, potential impact of specular reflections, and pos-
sible variations in tissue surface characteristics including curvature and texture. However, in
order to complement the phantom analysis and estimate a wider spectrum of optical properties
of the tissue under interrogation, in diffuse optics, numerical light transport simulations have
been invoked in a number of modern clinical applications. A few examples of such numerical
studies are fluorescence imaging systems for surgical guidance,74 source–sensor geometries in
diffuse optics applications,75 and diffuse optical tomography systems.76

This article presented the development of a spectroscopic MC code to simulate both elastic
and inelastic light interactions in biological tissue. The Raman and fluorescence spectroscopy
capabilities of the MC package were validated showing agreement between simulations and
experimental measurement in pure materials, here either nylon or PDMS tissue phantoms. In
layered materials (a thin layer of PDMS over a substrate of nylon), differences were observed
between the measured and simulated spectra in the higher wavelength regime, where most of the
nylon Raman peaks are located. This could potentially be due to multiple factors including the
inability of the reduced scattering approximation formula incorporated in the package (Mie scat-
tering) to effectively model scattering at larger depths, the inaccuracy in estimating the refractive
index mismatch between the two layers, and/or inefficiencies of the normalization process
applied to extract the Raman and fluorescence spectra.

To illustrate the analytic capabilities of the MC package, a detailed analysis was performed to
estimate the depth sensing capabilities of an existing surgical-guidance handheld probe instru-
ment. The study was performed with the objective of quantifying the impact of tissue optical
properties (absorption and elastic scattering) and the relative probability of occurrence of the
Raman effect on inelastic scattering depth sampling. Although realistic values for biological
tissue parameters such as absorption and elastic scattering can be found in the literature, no
realistic values were available to estimate the relative probability, or physical cross section,
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of inelastic scattering (herein referred to as Raman conversion rate) in biological tissue. As a
result, values associated with different orders of magnitude for this parameter were simulated to
evaluate its impact on depth sampling (Table 3).

It was shown that in media with higher inelastic cross-section values, the rate of Raman
conversion at superficial layers is higher and the sensing depth associated with the probing
instrument decreases accordingly. This is expected because when the Raman cross section
increases, the likelihood of Raman conversion of photons as they diffuse across shallow layers
grows, which results in a higher percentage of superficial Raman scattering events. Since the
probability of two consecutive Raman shifts for a single photon is negligible, the likelihood of
another Raman scattering at deeper layers for the already-Raman-shifted photons becomes van-
ishingly low, and hence, most of the detected Raman photons are those re-emitted from upper
layers. However, for lower conversion rates, the overall intensity of the collected Raman signal is
also lower. Therefore, reducing the Raman conversion rate for the sake of increasing the Raman
depth is at the expense of lowering the count associated with inelastically scattered photons. As a
result, there is a trade-off between Raman depth sensing and Raman SNR. It was also shown that
absorption has a direct impact on Raman sensing depth: larger tissue absorption values lead to
smaller sensing depths. This makes sense intuitively, since for smaller absorption coefficient
values the likelihood that photons diffuse over longer distances increases, hence, a larger relative
fraction of elastic scattering events occurs.

In the course of photon transport within tissue, among the four competing events, elastic
scattering acts as a stimulator for other three events. In other words, the higher the elastic scatter-
ing coefficient, the shorter would be the diffusion length between two consecutive scattering
events, the greater would be the number of collisions between photons and molecules, and there-
fore, the higher would be the chance of absorption, fluorescence, and Raman scattering. In a
more quantitative description, in a medium with a large scattering coefficient, the spatial varia-
tion of electric polarizability dα∕dx, which mainly contributes to the amplitude of re-emitted
Raman signal, is large. Therefore, a positive incremental addition to the scattering coefficient,
such as Δμ 0

s, leads to a positive incremental increase ΔρR in the Raman conversion rate, i.e.,
μ 0
s þ Δμ 0

s → ρR þ ΔρR. Hence, as discussed in the previous section, as the scattering coefficient
becomes larger, the Raman conversion rate increases, and the event of Raman shift at upper
layers becomes more likely. Therefore, the Raman sensing depth in tissues or phantoms with
higher scattering coefficients is less than the depth in structures with lower scattering
coefficients.

As a final point, it should be mentioned that the discussed MC algorithm is a direct method of
light transport calculation, which may require large number of photons, especially in situations
where one of the competing processes has a very small probability to trigger this. As reviewed
comprehensively in Ref. 21, there are several options to accelerate the MC modeling of light
transport in turbid media, including scaling, perturbation, and convolution. In these accelerated
techniques, the MC analysis is performed indirectly by modifying an existing base MC calcu-
lation. As noted earlier, the developed package gives the option of recording the final location,
direction, and wavelength of the simulated photons. Hence, in principle, a user can readily use
those recorded data as a base simulation and perform accelerated MC analysis in new cases.

Table 3 Optical properties used in the sensing analysis and corresponding calculated Raman
sensing depths.

Parameters

Depth of 75%
sensitivity (μm)

Depth of 90%
sensitivity (μm)

Absorbtion
μa (mm−1)

Scattering μ 0
s

(mm−1)
Mean free
path (μm) PRaman

0 to 1.4 0.5 200 10−6 270 to 600 75 to 160

4 25 140 to 190 41 to 80

30 3.3 10 to 80 15 to 25

0.001 1 100 10−3 to 10−6 105 to 225 40 to 75
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Following the given explanations and shown results, it is hoped that the developed package will
bring more understanding in the area of light transport modeling and equip the contributing
research community with a versatile toolset for optical detection and treatment as well as surgical
guidance.
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