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Abstract

Significance: Label-free quantitative phase imaging is a promising technique for the automatic
detection of abnormal red blood cells (RBCs) in real time. Although deep-learning techniques
can accurately detect abnormal RBCs from quantitative phase images efficiently, their
applications in diagnostic testing are limited by the lack of transparency. More interpretable
results such as morphological and biochemical characteristics of individual RBCs are highly
desirable.

Aim: An end-to-end deep-learning model was developed to efficiently discriminate thalassemic
RBCs (tRBCs) from healthy RBCs (hRBCs) in quantitative phase images and segment RBCs for
single-cell characterization.

Approach: Two-dimensional quantitative phase images of hRBCs and tRBCs were acquired
using digital holographic microscopy. A mask region-based convolutional neural network
(Mask R-CNN) model was trained to discriminate tRBCs and segment individual RBCs.
Characterization of tRBCs was achieved utilizing SHapley Additive exPlanation analysis and
canonical correlation analysis on automatically segmented RBC phase images.

Results: The implemented model achieved 97.8% accuracy in detecting tRBCs. Phase-shift sta-
tistics showed the highest influence on the correct classification of tRBCs. Associations between
the phase-shift features and three-dimensional morphological features were revealed.

Conclusions: The implemented Mask R-CNN model accurately identified tRBCs and seg-
mented RBCs to provide single-RBC characterization, which has the potential to aid clinical
decision-making.
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1 Introduction

Information about red blood cell (RBC) morphology is crucial to reach a diagnosis of
blood disorders because RBC morphologies often change due to altered membrane lipid com-
position, iron deficiency, or metabolic abnormalities.1,2 The current diagnostic procedure
for many blood-related diseases is the blood smear test in which the morphology of stained
RBCs is examined under a light microscope. Staining of the blood film is usually required
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to achieve adequate image contrast for proper microscopic examination. However, the staining
process is time-consuming and may cause variations in the resulting contrast, both of which
impede the blood smear test to be used as an automatic and high-throughput procedure.3

A promising label-free microscopy technique for high-throughput examination of blood
smears is quantitative phase imaging (QPI).4–6 QPI is capable of mapping in two dimensions
the phase shift caused by cellular constituents when a source light beam transmits through a
transparent cell. The measured phase shift represents the line integral of the refractive index
(RI) contrast between the specimen and its environment along the light path, which is parallel
to the optical axis and corresponds to the physical thickness of the specimen. Since RBCs are
mostly composed of hemoglobin and are without many organelles, the RI within an RBC is
approximately constant and proportional to its hemoglobin concentration.7 Therefore, the phase
shift of each pixel in an RBC phase image combines information about the hemoglobin con-
centration and thickness of the RBC at that position. Furthermore, integrating the phase shift
over all pixels of an RBC phase image generates the so-called optical volume, which is propor-
tional to the total dry mass of hemoglobin8 in the RBC. The optical volume has been shown to be
a major feature in identifying hypochromic RBCs, as seen in iron deficiency anemia9,10 and
thalassemia.10,11 In addition, phase-shift statistics and two-dimensional (2-D) morphological
features, such as the projected area, perimeter, and lengths of major and minor axes, have been
extracted from quantitative phase images of RBCs and have been used to classify blood
disorders, including hereditary spherocytosis,4,9 malaria,12–14 and sickle cell disease,15–17 where
RBCs possess abnormal hemoglobin content and show abnormal shape. These advances high-
light a major advantage of using QPI for the diagnosis of RBC-related diseases: simultaneously
quantifying diagnostically relevant hemoglobin content and morphological information without
exogenous labels.

To further develop QPI to become a practical tool for automatic detection of RBC-related
diseases, the conventional image processing approach18,19 consists of multiple steps including
the segmentation of individual RBCs from QPI data, extraction and selection of features, and
training of a classifier. For the automatic segmentation of multiple RBCs from a single quanti-
tative phase image, Yi et al.20 have proposed a method based on marker-controlled watershed
transform algorithm. This method addressed the issues of overestimation and underestimation in
simple thresholding such as the Otsu method and is less susceptible to noise. However, the pro-
posed algorithm is time-consuming and hence not suitable for real-time processing in clinical
applications. As for selecting an optimal set of features to achieve accurate classification, special
domain knowledge is required, and this selection is specific for each disease since different dis-
eases present distinctive characteristics. The efficiency of both the development of an automatic
tool and the inference of the results by the tool is not optimal using the conventional image
processing approach.

The efficiency issues can be addressed by emerging deep-learning techniques, such as con-
volutional neural networks (CNNs).21,22 In addition to fast inference without time-consuming
image processing, CNNs greatly simplify the development of image-based automatic diagnostic
tools since feature extraction and selection are automatic and do not require any domain knowl-
edge. Various CNN models have been applied to quantitative phase images to accurately classify
19 bacterial species,23 distinguish anthrax spores from five Bacillus species for biodefense,24 and
detect breast cancer cells in whole blood samples for early cancer diagnosis and treatment
response assessment.25 Other CNN models have been developed to segment healthy RBCs
(hRCBs) in quantitative phase images26 and to detect RBCs with sickle cell disease27–29 or
RBCs infected with malaria30 based on stained blood smear images. However, no CNN model
has been established to segment and detect thalassemic RBCs (tRBCs) in quantitative phase
images. Additionally, the black-box nature of deep-learning techniques has limited the interpre-
tation of results, which has impeded the adoption of CNN models in medicine. In diagnostics, a
comprehensive analysis of single cells is highly desirable to provide detailed morphological and
chemical characteristics, thus aiding both the diagnosis and treatment planning. Hence, single-
cell segmentation is a critical step to obtain the regions of interest (ROI) and to subsequently
characterize single cells. An efficient deep-learning technique, mask region-based CNN (Mask
R-CNN), has been proposed to automatically achieve instance segmentation of every recognized
object.31 Since Mask R-CNN can achieve detection and segmentation simultaneously, it has been
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applied to automatically analyze fluorescence images of immune cells32 and to detect and
segment nuclei in images of hematoxylin and eosin-stained histopathology slides of multiple
organs33,34 and cancer tissues.33,35

In this paper, we demonstrate the implementation of Mask R-CNN for the automatic
discrimination between quantitative phase images of hRBCs and those of tRBCs. Thalassemia
is an inherited anemia that has a high prevalence (3.6%)36 worldwide. Owing to the early onset
and detrimental effects of thalassemia, a minimally invasive diagnostic method for infants is
needed to predict the disease severity and, then, to adopt timely and suitable treatments.
QPI is well suited for this application because it requires only a drop of blood sample. In the
current study, single-shot digital holographic microscopy (DHM) was used to acquire 2-D quan-
titative phase images of RBCs collected from thalassemia-minor patients and healthy subjects.
A Mask R-CNN model was then trained to perform end-to-end detection of tRBCs. The
classification accuracy of the model was benchmarked against an optimal classifier, which was
built with the XGBoost technique and trained with 15 single-cell features, including phase-shift
statistics, 2-D morphological features, and textural features extracted from manually segmented
RBC phase images. To demonstrate the advantage of the Mask R-CNN model that provides
instance segmentation, we extracted single-cell features from automatically segmented RBC
phase images and trained a second XGBoost classifier to discriminate tRBCs from healthy ones.
The features that contributed the most to successfully distinguish tRBCs were obtained using the
SHapley Additive exPlanation (SHAP) analysis,37,38 which is based on game theory. Moreover,
we analyzed correlations between the 2-D QPI features and three-dimensional (3-D) morpho-
logical features obtained with optical diffraction tomography of the same RBCs. Our findings
suggest the use of QPI as a useful tool to capture 3-D morphological characteristics of abnormal
RBCs, such as those seen in patients with thalassemia.

2 QPI Instrumentation and Data Acquisition

We acquired 2-D quantitative phase images of RBCs using off-axis DHM. Details of the opti-
cal setup are described in Ref. 39 and a schematic diagram is shown in Fig. 1(a). A laser beam
from a 532-nm continuous-wave laser goes through an oil-immersion condenser to generate a
planar wavefront, illuminating the specimen at normal incidence. An objective lens (Olympus
UPLSAPO 100XO, 1.4 NA) collects the transmitted field to project a magnified image of the
specimen on a CMOS camera sensor (GZL-CL-41C6M-C, Gazelle, Point Grey). A transmis-
sion grating (Edmund, 80 grooves∕mm) located after the tube lens (L5) generates multiple
diffracted beams to provide a uniform reference beam that goes through the same components
as the sample beam, before interfering with the sample beam at the camera sensor. Awindow is
placed at the Fourier plane of L6 to allow the full zeroth-order beam and the DC signal of the
first-order beam to pass. As shown in the inset of Fig. 1(a), the field of view in the zeroth-order
beam is shifted from that in the first-order beam by moving the grating slightly off the rear
focal plane of L5. At the camera sensor plane, the image of the specimen in the zeroth-order
beam (henceforth the sample beam) overlaps with an empty area in the first-order beam
(henceforth the reference beam) to form interference images of the specimen [as shown in
Fig. 1(b)], which are recorded with a transverse magnification of approximately ×85. The same
optical setup has been used to acquire quantitative phase images of RBCs under various inci-
dent angles by rotating a galvanometer mirror (GM, Cambridge Technology Inc.) located at a
conjugate plane of the specimen.11 3-D RI maps have been reconstructed based on optical
diffraction tomography with direct interpolation in the Fourier domain and the positivity
constraint.40 An example of a reconstructed phase image and RI map of an hRBC are dem-
onstrated in Figs. 1(c) and 1(d).

This study was approved by the Institutional Review Board of National Taiwan University
Hospital, and an informed consent was obtained from each subject. We imaged 210 hRBCs from
11 healthy subjects and 475 tRBCs from 29 adult thalassemia-minor patients. About 10 inter-
ference images were acquired from each RBC to expand the dataset. In total, 2001 hRBCs and
4268 tRBCs interference images were collected. Phase images were retrieved from the interfer-
ence images by bandpass filtering in the spatial frequency domain and inverse Fourier transform
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without zero-padding,41 followed by a discrete cosine transform-based phase unwrapping
method.42 We implemented the phase retrieval and unwrapping processes by parallel computing
on a NVIDIA GTX 1080 Ti GPU and an Intel Core i7-3820 CPU, enhancing the computation
speed to about 289 fps.

Since the number of tRBC images was about two times more than that of hRBC images,
we adopted data augmentation by random rotation, to enlarge the hRBC dataset to balance data
for XGBoost classifier training and Mask R-CNN model building. Furthermore, the operation
of random rotation increased the variation in datasets, to prevent overfitting during Mask
R-CNN model training.43–45 The final total number of hRBC images was equal to that of
tRBC.

Fig. 1 Schematic diagram of the DHM and imaging results of a hRBC. (a) Optical setup; upper
inset: the red and the green areas depict the field of view of the first-order and the zeroth-order
beam, respectively. Lower inset: the spatial frequency extent of the first-order and the zeroth-order
beam is shown in red and green, respectively; dots in the center indicate the DC component. An
interferogram of an hRBC is shown in (b), and the corresponding phase image and cross-sectional
views of the RI tomogram are shown in (c) and (d), respectively. Po, polarizer; QWP, quarter-wave
plate; OL1 and OL2, objective lens; L1 to L7, lenses; GM, galvanometer mirror.
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3 Automatic Detection and Delineation of RBCs

3.1 Development of the Mask R-CNN Model

The Mask R-CNN model was developed using the Deep-Learning-Framework Keras (v2.3.1)
and TensorFlow (v1.12.0) as the backend, and accelerated using NVIDIA CUDA (v10.0) and
cuDNN (v7.5). The architecture of the Mask R-CNN model, shown in Fig. 2, can be split into
two stages. Tasks of the first stage were image scanning and proposal generation. The tasks of the
second stage were object classification,46 bounding box coordinates generation,46 and mask
generation31 for each RBC in a quantitative phase image. The two stages were combined into
a single workflow that can be trained end-to-end, achieving pipeline optimization and optimal
performance.31 A 101-layer CNN backbone with a feature pyramid network, ResNet-101-FPN,46

was used to extract high-level image features via back propagation. To feed the phase images into
the backbone to obtain feature maps, single-channel phase maps were replicated into three-
channel images (1024 × 1024 × 3 channels). A region proposal network was then applied to
predict candidate bounding boxes of objects (RBCs) from the high-level image feature maps.
An RoIAlign layer scaled every candidate bounding box to the same size (7 × 7 × 3 channels)
using bilinear interpolation to retain floating-point numbers for subsequent tasks. The scaled
ROI feature maps were then passed to fully connected layers to infer the object class and to
determine bounding box offset values. In parallel, masks (28 × 28 × 3 classes) were generated
from the scaled ROI feature maps in the mask branch with multiple convolutional layers.

We partitioned the augmented dataset described in Sec. 2 into training, validation, and test
datasets with a ratio of 3:1:1. The initial learning rate, batch size, and steps per epoch were 0.002,
64, and 80, respectively. The categorical cross-entropy of classification and the intersection over
union (IoU)47 of masks were calculated on the validation dataset to monitor the performance of
classification and segmentation, respectively.

3.2 Development of the Benchmark Classifier Using XGBoost

To benchmark the performance of the proposed Mask R-CNN model in distinguishing tRBCs
from hRBCs, we built an optimal classifier with features extracted from manually segmented
RBC quantitative phase images. Table 1 lists the 15 features that were used. The optical and
morphological features were readily obtained from each segmented RBC phase image, and the
textural features were calculated using the gray-level co-occurrence matrix (GLCM)48,49 of each
segmented RBC image to quantify its spatial hemoglobin distribution. GLCM is a statistical
method to describe the textural structure of an image by statistically sampling the pattern of
gray-level occurrences in relation to other gray levels. The benchmark classifier was built using
XGBoost (eXtreme Gradient Boosting), an open-source library of the gradient boosted trees
algorithm.50 XGBoost is a supervised machine learning technique that combines a set of clas-
sification and regression trees to predict a target variable. XGBoost uses a regularized objective
function to evaluate the classification accuracy and simplification of the ensemble model and

Fig. 2 Illustration of Mask R-CNN architecture for instance segmentation and classification. A
CNN extracts image features, and a region proposal network generates ROIs containing individual
RBCs. The RoIAlign layer scales every ROI to the same size and passes the ROIs to each branch
to perform RBC detection and segmentation.
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decide whether a new tree is to be ensembled to the prior model or not. XGBoost has been widely
used for classification tasks and has won many machine learning competitions in Kaggle, due to
its advantages in flexible model tuning, accelerated computing, and enhancements of various
algorithm.51 The hRBC dataset was expanded as described in Sec. 2, and the augmented dataset
was separated into a training dataset and a test dataset in a ratio of 4:1 for the XGBoost classifier.

3.3 Results of RBCs Detection and Delineation

Table 2 summarizes the classification performance of Mask R-CNN model and the benchmark
XGBoost classifier on the test dataset. The Mask R-CNN model achieved high accuracy (97.8%)
in the test dataset, which is very close to the accuracy obtained by the benchmark XGBoost
classifier (accuracy 99.9%).

Exemplary results of segmenting RBCs with the Mask R-CNNmodel are illustrated in Fig. 3,
and corresponding ground truths by manual delineation are shown in blue lines in Fig. 3 for
comparison. The segmentation performance of the Mask R-CNN model was evaluated using
IoU between the model-predicted mask and the ground-truth mask. The average IoU of the test
dataset was 0.945. The RBC phase images, segmented by the Mask R-CNN model, were utilized
to train a second XGBoost classifier using the procedure described in Sec. 3.2. The classification
performance, also listed in Table 2, was the same as that obtained by the benchmark XGBoost
classifier trained with manually delineated RBC images. These results show that the Mask
R-CNN model accurately segmented RBC quantitative phase images.

4 Characterization of Thalassemic RBC Quantitative Phase Images

To unveil the underlying characteristics of RBCs that enable the accurate classification of tRBCs
and to demonstrate an advantage of Mask R-CNN’s in performing instance segmentation, we
took the segmentation results of the Mask R-CNNmodel to train a second XGBoost classifier for
discriminating tRBCs from hRBCs. Then, we performed the SHAP analysis to evaluate the rel-
ative impact of each feature on the XGBoost classifier.52–55 Each dot in Fig. 4 indicates the SHAP
value of an RBC in the test dataset for the feature mentioned on the left. The color of a dot
indicates the measured value for the corresponding feature, with higher values in red and lower
values in blue. The magnitude of the SHAP value indicates the impact level of each data point to

Table 1 List of features used in the XGBoost classifier.

Category Features

Phase-shift statistics (n ¼ 5) Optical volume, mean, fifth percentile, 95th percentile,
and standard deviation of phase shift

Morphological property (n ¼ 5) Projected area, perimeter, major axis length,
minor axis length, and eccentricity

Textural property based on the GLCM (n ¼ 5) Contrast, dissimilarity, homogeneity, energy,
and angular second moment49

Table 2 Comparison of classification performance on individual RBCs using Mask R-CNN,
XGBoost with manual delineation and XGBoost with Mask R-CNN segmentation results.

Method Sensitivity (%) Specificity (%) F1-score AUC Accuracy (%)

Mask R-CNN 97.1 98.5 0.975 0.982 97.8

XGBoost with MD 99.9 100 0.992 0.999 99.9

XGBoost with Mask R-CNNa 99.9 100 0.992 0.999 99.9

Note: AUC, area under the receiver operating characteristic curve; MD, manual delineation.
aXGBoost classifier trained with the segmentation results from Mask R-CNN.
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Fig. 3 Exemplary results of the delineation and detection by the Mask R-CNN model. Two slides
with hRBCs and tRBCs are shown in (a) and (b). Blue lines are the manual delineation contours of
RBCs as the ground truth. Green and red lines mark mode-predicted contours of RBCs classified
as hRBCs and tRBCs, respectively. The misclassified cases in (a) and (b) are enlarged and shown
in (c) and (d). The model-predicted contours match well with manual delineation contours, indicat-
ing that the misclassification is not due to failed segmentation.

Fig. 4 SHAP value distributions of the 15 selected features for XGBoost classifier trained with
(a) Mask R-CNN segmentation and (b) manual segmentation. The features are sorted according
to the mean absolute SHAP value that represents the relative contribution of each feature to the
XGBoost classifier. The color presents the normalized feature value of each RBC in the test dataset.
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the model. Therefore, the overall impact of each feature can be quantified by the sum of the
absolute SHAP values, over all the data points. In Fig. 4, the distributions of relative feature
values also indicate the feature representations of each class. For example, tRBCs demonstrated
a low optical volume, mean, and fifth percentile of phase shift but a high standard deviation of
phase shift. The most influential features, with a mean absolute SHAP value larger than 0.6, are
all related to phase shifts, including the mean, the sum (optical volume), the fifth percentile, and
the standard deviation of phase shifts, of single RBCs. On an average, the morphological features
showed a moderate influence and the textural features showed the least influence, on the
XGBoost classifier. The lack of significant contributions from the textural features could be
attributed to approximately uniform hemoglobin distributions in both hRBCs and tRBCs.
However, in patients with severe anemia or malaria, where RBCs are nucleated or infected, the
texture analysis may provide important information for detecting the abnormal RBCs. SHAP
analysis was also performed on the benchmark XGBoost classifier. The result is shown in
Fig. 4(b) and is very similar to that of the XGBoost classifier trained with Mask R-CNN seg-
mented RBC images shown in Fig. 4(a). These results demonstrated that there were no signifi-
cant differences in the discriminant rules between the classifier trained with the Mask R-CNN
segmentation and the classifier trained with the manual delineation.

5 Correlations between the Features Extracted from 2-D Quantitative
Phase Images and 3-D RI Maps of RBCs

Results shown in Table 2 indicate that 2-D QPI-extracted features are sufficient to accurately
discriminate tRBCs from hRBCs. According to the SHAP analysis described in Sec. 4, the most
influential features are related to the phase shifts of RBCs. Since the phase shift is the line inte-
gral of the RI contrast along the RBC thickness, it is plausible that the 2-D QPI features are
correlated to the 3-D morphological information for distinguishing tRBCs from hRBCs. To elu-
cidate correlations between the phase-shift statistics and features extracted from 3-D RI maps of
the same RBCs, we applied the canonical correlations analysis (CCA) to investigate associations
between the two sets of features.

5.1 Procedure of the Canonical Correlation Analysis

CCA is a statistical method for exploring correlations between two sets of variables acquired on
the same experimental units.56 Assume X and Y denote two sets of continuous variables. CCA
aims to seek two vectors a and b, canonical coefficients, to maximize the correlation between
linear combinations of X and Y formulated asU ¼ aTX andW ¼ bTY. The pair of vectorsU and
W is called canonical variates, and the correlation betweenU andW is quantified to represent the
canonical correlation. After the first pair of canonical variates is obtained, a new pair of canonical
variates can be found by maximizing their correlation under the condition that they are uncorre-
lated with previously extracted canonical variates. The process of canonical variate extraction
repeats until the number of canonical variates equals to the minimum feature number between
X and Y.

The top four 2-D QPI features identified by the SHAP analysis (Sec. 4) included optical
volume (OV), mean (ϕmean), fifth percentile (ϕP5), and the standard deviation (ϕSD) of sin-
gle-RBC phase shifts and were chosen as predictor variables (X). For selecting features of the
3-D RI maps, we chose features that demonstrated relatively good performance in discriminating
tRBCs from hRBCs (the area under the receiver operating characteristic curve, AUC > 0.8),
as reported in Table 3 of Ref. 11. These selected 3-D features were assigned as response
variables (Y) and included the volume (V), surface-area-to-volume ratio (S∕V), sphericity index
½SI ¼ π1∕3ð6VÞ2∕3∕S�, average thickness (Tavg), central thickness (T0), and the difference
between the thickness at three quarters of the normalized radial position and T0 (Δ75). Each
of the variables was standardized by removing the mean and scaling to unit variance before
CCA was performed. Since the number of predictor variables and response variables are p ¼
4 and q ¼ 6, respectively, there are four pairs of canonical variates ½minðp; qÞ ¼ 4� denoted as
ðUi;WiÞ with i ¼ 1, 2, 3, and 4.
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Since the canonical correlation is calculated between a pair of canonical variates that are
linear combinations of the original variables, it is desirable to analyze associations between the
canonical variates and the original variables. We followed the method described by Arifler57 that
used within-set loadings to assess the associations. For example, a predictor variable is inter-
preted to be highly correlated with a canonical variate Ui if it has a relatively high canonical
loading. Similarly, the canonical loadings of response variables can be used to interpret their
correlations with Wi.

5.2 Associations between Features Extracted from 2-D Quantitative Phase
Images and 3-D RI Maps of the Same RBCs

The canonical correlations (ρ) and canonical loadings (L) of CCA are listed in Table 3. The top
two canonical variate pairs showed very high correlations (ρ ¼ 0.94 and 0.87, respectively). The
third and fourth pairs of canonical variates showed weak correlations (ρ ¼ 0.27 and 0.15, respec-
tively) and will not be discussed further. The first pair of canonical variates, U1 and W1, is
dominated byOV and V, respectively. Since phase shift is the product of RI and RBC thickness,
and OV is the sum of the phase shift over the whole RBC image, OV is expected to be propor-
tional to RBC volume if the average RI does not vary significantly between RBCs from the same
subject.58 Both OV and V concern the volume of an RBC, not the shape of it. In contrast, an
inspection of canonical loadings of the second canonical variate pair, U2 andW2, indicates asso-
ciations between the other phase-shift statistics and various shape-related features. Following the
same assumption that there is no significant difference in the average RI between RBCs from the
same subject, the phase shift is proportional to the thickness of an RBC. Therefore, ϕmean is
proportional to Tavg and ϕP5 and is closely related to T0. Figures 3 and 5 of Ref. 11 show that
tRBCs tend to be shaped like doughnuts, which is associated with increase in ϕSD, S∕V, andΔ75,

Table 3 CCA between phase-shift statistics extracted from 2-D quantitative phase images and
features extracted from 3-D RI maps.

Pairs of canonical variates First Second Third Fourth

Canonical correlations (ρ) 0.94 0.87 0.27 0.15

Shared variances (ρ2) 0.89 0.76 0.07 0.02

Canonical loadings

U1 U2 U3 U3

OV −0.53 −0.51 0.14 −0.04

ϕmean 0.13 −0.60 0.17 −0.06

ϕSD 0.27 0.53 0.19 0.09

ϕP5 −0.10 −0.69 0.05 −0.04

W 1 W 2 W 3 W 4

V −0.67 −0.55 0.06 0.00

S∕V 0.26 0.77 −0.06 0.03

SI 0.18 −0.79 0.10 −0.02

T avg −0.06 −0.81 0.06 0.03

T 0 −0.04 −0.74 0.04 0.06

Δ75 −0.00 0.81 0.02 −0.05

Note: Bold values show the highest correlation in each canonical loading.
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and with a decrease in SI. The canonical loadings of U2 and W2 also indicate that ϕSD is pos-
itively correlated with S∕V and Δ75 and negatively correlated with SI. The results of CCA reveal
associations between the phase-shift statistics and the 3-D morphological features of RBCs and
facilitate the interpretation of 2-D QPI-based features that achieved excellent accuracy in
distinguishing tRBCs from hRBCs.

6 Discussion and Conclusions

We successfully applied Mask R-CNN to build a classification model to accurately
(accuracy ¼ 97.8%) discriminate between hRCBs and tRBCs, based on quantitative phase
images of unstained RBCs. In the development phase of the Mask R-CNN model, a CNN back-
bone was adopted to automatically extract deep features and to replace the manual feature extrac-
tion and selection steps employed in conventional image processing-based automatic diagnostic
methods. Therefore, the requirement for hematological knowledge to select optimal features is
eliminated. During inference, the Mask R-CNN model can efficiently and automatically detect
tRBCs. In addition, the same Mask R-CNN model also provided segmentation of RBCs for
single-cell characterization of 2-D QPI features. The results shown in Sec. 4 reveal the most
important 2-D QPI features of tRBCs that can separate them from hRBCs. In future clinical
applications, these features can be quantified automatically and used by healthcare providers
to aid their decision-making processes.

Figure 4 shows that the most influential features for the classification of tRBCs are related to
phase shifts. The optical volume (i.e., the sum of phase shifts) of an RBC is proportional to the
dry mass of the RBC. It is worth to note that the mean corpuscular hemoglobin obtained using a
regular blood test (i.e., complete blood count) is the average mass of hemoglobin per RBC in the
whole blood sample. Therefore, QPI of RBCs provides not only the average hemoglobin content
per RBC but also the hemoglobin content of every RBC imaged. Results of the CCA analysis
show that the other phase-shift statistics are highly associated with various 3-D morphological
features of RBCs (see Table 3 in Sec. 5.2). To the best of our knowledge, correlations between
phase shifts and the 3-D morphology of tRBCs have not been experimentally investigated and
reported. Mugnano et al.10 characterized the phase distribution of individual RBCs by fitting
quantitative phase images of RBCs with Zernike polynomials. Three Zernike coefficients,
namely, the piston, the defocus, and the third-order spherical aberrations, were identified to best
distinguish tRBCs from hRBCs. The piston is related to the size and the mean phase shift of an
RBC, and so is the optical volume. The defocus and the third-order spherical aberration are
associated with the biconcave shape of RBCs. The 3-D morphological features analyzed in the
current study are more intuitive and commonly used, and thus allow for direct comparisons with
existing studies in the literature.59–64

To realize high-throughput screening of RBCs for clinical applications, both the hardware
and the software reported in this paper need to be improved. First, the QPI instrument can be
integrated with microfluidic devices to automate the dilution and pumping of blood samples for
optimal acquisition speed with sufficient image quality.5,65 Second, rapid processing and infer-
ence of quantitative phase images using the Mask R-CNN method is needed for real-time RBC
detection and delineation. Currently, the inference time of the Mask R-CNN model on a phase
map with one million pixels is under 0.2 s using an NVIDIA GTX 1080 Ti GPU. To improve the
speed of the inference, the CNN backbone can be further optimized by combining layers and
optimizing the kernel selection, for instance, using inference accelerators such as the TensorRT.66

We believe that the inference frame rate of the proposed Mask R-CNN model can achieve video
rate on images with one million pixels, using our current computing hardware. Furthermore, due
to its excellent automatic detection and high deplorability, the proposed Mask R-CNN model is
well suited for assisting diagnostics via telehealth in remote areas lacking medical resources.

In conclusion, we demonstrated simultaneously the automatic delineation of RBC phase
images for single-cell analysis and highly accurate detection of tRBCs using Mask R-CNN.
The developed Mask R-CNN model efficiently processed massive amounts of QPI data and
greatly simplified the process of developing an automatic method for detecting RBC-related
abnormalities from the QPI data. Moreover, the instance segmentation capability of the
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Mask R-CNN model was very useful for single-cell characterization, and combined with a clas-
sifier and the SHAP analysis, provided invaluable insights into the relationship between RBC
QPI features and diseases. To help interpret the QPI features, CCA was performed to elucidate
associations between the statistics of the phase shift and the more intuitive RBC 3-D morphol-
ogy. We believe that Mask R-CNN has the potential to improve the efficiency of hematological
examinations and achieve single-RBC characterization to aid clinical decision-making.
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