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Abstract

Significance: The Monte Carlo (MC) method is widely used as the gold-standard for modeling
light propagation inside turbid media, such as human tissues, but combating its inherent sto-
chastic noise requires one to simulate a large number photons, resulting in high computational
burdens.

Aim: We aim to develop an effective image denoising technique using deep learning (DL) to
dramatically improve the low-photon MC simulation result quality, equivalently bringing further
acceleration to the MC method.

Approach: We developed a cascade-network combining DnCNN with UNet, while extending a
range of established image denoising neural-network architectures, including DnCNN, UNet,
DRUNet, and deep residual-learning for denoising MC renderings (ResMCNet), in handling
three-dimensional MC data and compared their performances against model-based denoising
algorithms. We also developed a simple yet effective approach to creating synthetic datasets
that can be used to train DL-based MC denoisers.

Results: Overall, DL-based image denoising algorithms exhibit significantly higher image
quality improvements over traditional model-based denoising algorithms. Among the tested DL
denoisers, our cascade network yields a 14 to 19 dB improvement in signal-to-noise ratio, which
is equivalent to simulating 25× to 78× more photons. Other DL-based methods yielded similar
results, with our method performing noticeably better with low-photon inputs and ResMCNet
along with DRUNet performing better with high-photon inputs. Our cascade network achieved
the highest quality when denoising complex domains, including brain and mouse atlases.

Conclusions: Incorporating state-of-the-art DL denoising techniques can equivalently reduce the
computation time of MC simulations by one to two orders of magnitude. Our open-source MC
denoising codes and data can be freely accessed at http://mcx.space/.
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1 Introduction

Non-ionizing photons in the near-infrared (NIR) wavelength range have many benefits in bio-
medical applications compared with ionizing ones such as x-ray. Because of the low energy, NIR
light is relatively safe to use and can be applied more frequently; the relatively low cost and high
portability of NIR devices makes them excellent candidates for addressing needs in functional
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assessment in the bedside or natural environments.1 However, the main challenge of using low-
energy NIR photons is the high degree of complex interactions with human tissues due to the
presence of high scattering, which is much greater than that of x-rays. As a result, the success of
many emerging NIR-based imaging or intervention techniques, such as diffuse optical tomog-
raphy,2 functional near-infrared spectroscopy,3 photobiomodulation,4 etc., requires a quantitative
understanding of such complex photon-tissue interactions via computation-based models.

The Monte Carlo (MC) method is widely regarded as the gold-standard for modeling photon
propagation in turbid media,5 including human tissues, due to its accuracy and flexibility.6

It stochastically solves the general light propagation model—the radiative transfer equation
(RTE)—without needing to build large simultaneously linear equations.7 As an approximation
of RTE, the diffusion equation (DE) can be computed more efficiently using finite element-based
numerical solvers,8 and DE is known to yield problematic solutions in regions that contain
low-scattering media.9 In addition to the accuracy and generality, simplicity in implementing
MC algorithms compared with other methods has made MC a top choice not only for teaching
tissue-optics but also for developing open-source modeling tools.

MC methods have attracted even greater attention in recent years as simulation speed has
increased dramatically due to the broad adoptions of massively parallel computing and graphics
processing unit (GPU) architectures. The task parallel nature of MC algorithms allows it to be
efficiently mapped to the GPU hardware.10 Current massively parallel MC photon propagation
algorithms are capable of handling arbitrary 3D heterogeneous domains and have achieved hun-
dreds-fold speedups compared with traditional serial simulations.11–15 This breakthrough in the
MC algorithm has allowed biophotonics researchers to increasingly use it in routine data analy-
ses, image reconstructions, and hardware parameter optimizations, in addition to its traditional
role of providing reference solutions in many biophotonics domains.

A remaining challenge in MC algorithm development is the presence of stochastic noise,
which is inherent in the method itself. Because an MC solution is produced by computing the
mean behaviors from a large number of photon packets, each consisting of a series of random
samplings of the photon scattering/absorption behaviors, creating high-quality MC solutions
typically requires simulations of tens to hundreds of millions of photons. This number depends
heavily on the domain size, discretization resolution, and tissue optical properties. This translates
to longer simulation times because the MC runtime is typically linearly related to the number of
simulated photons. From our recent work,16 a 10-fold increase of photon number typically
results in a 10 decibel (dB) signal-to-noise ratio (SNR) improvement in MC solutions, sug-
gesting that MC stochastic noise is largely shot-noise bound. From this prior work, we have also
observed that the MC stochastic noise is spatially varying and, in highly scattering/absorbing
tissues, exhibits a high dynamic range throughout the simulation domain.

To obtain high-quality simulation results without increasing the number of simulated pho-
tons, signal processing techniques have been investigated to remove the stochastic noise intro-
duced by the MC process. This procedure is commonly referred to as denoising.16,17 In the past,
model-based noise-adaptive filters have been proposed to address the spatially varying noise in
the radiation dosage estimation context and computer graphics rendering.18–20 However,
improvements provided by applying these filtering-based techniques have been small to mod-
erate, creating an equivalent speedup of only three- to fourfold.16 Recent works on denoising ray-
traced computer graphics and spatially variant noisy images in the field of computer vision focus
mainly on machine-learning (ML)-based denoising methods, more specifically convolutional
neural networks (CNNs).17 Despite their promising performance compared with traditional
filters, no attempt has been made, to the best of our knowledge, to adapt denoisers designed
for the two-dimensional (2D) low bit-depth image domain to high dynamic range MC fluence
maps.16,21 Our motivation is therefore to develop effective CNN-based denoising techniques,
compare them with state-of-the-art denoisers in the context of MC photon simulations, and
identify their strengths compared with traditional model-based filtering techniques.

In recent years, the emergence of CNNs has revolutionized many image-processing-centered
applications, including pattern recognition, image segmentation, and super-resolution. CNNs
have also been explored in image denoising applications, many targeted at removing additive
white Gaussian noise (AWGN) from natural images22 and, more recently, real camera noise.23,24

Compared with classical approaches, CNNs have also demonstrated impressive adaptiveness to
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handle spatially varying noise.25,26 In a supervised setting, given a dataset representative of
media encountered in real-life simulations, CNNs have shown to better preserve sharp edges
of objects without introducing significant bias, compared with model-based methods.22,27,28

Finally, due to extensive efforts over the past decade to accelerate CNNs on GPUs, modern
implementations of CNN libraries can readily take advantages of GPU hardware to achieve
high computational speed compared with traditional methods. Nonetheless, there has not been
a systematic study to quantify CNN image denoiser performance over MC photon transport
simulation images, either in 2D or 3D domains.

The contributions of this work are the following. First, we develop a simple generative model
that uses the Monte Carlo eXtreme (MCX)12 software to create a synthetic dataset suited for
supervised training of an image denoiser, providing ample opportunities for learning its under-
lying noise structure. Second, we develop and characterize a novel spatial-domain CNN model
that cascades DnCNN26 (an effective global denoiser) and UNet29 (an effective local denoiser).
Third, we adapt and quantitatively compare a range of state-of-the-art image denoising networks,
including DnCNN,26 UNet,29 DRUNet,28 deep residual-learning for denoising MC renderings30

(referred to as ResMCNet hereinafter), and our cascaded denoiser, in the context of denoising 3D
MC simulations. We assess these methods using a number of evaluation metrics, including
mean-squared error (MSE) and structural similarity index measure (SSIM). For simplicity, other
deep-learning (DL)-based denoising methods that do not operate in the spatial domain31,32 or
require specialized knowledge from their target domain33 are not investigated here and are left for
future work. Finally, a range of challenges encountered during the development of our approach
are also discussed, providing guidance to future work in this area.

2 Methods

2.1 Training Dataset Overview

To train and evaluate CNN denoisers in a supervised fashion, a series of datasets that provided
one-to-one mappings between “noisy” and “clean” simulations were generated. The training
dataset was created using our MCX software package,12 in which simulations of a range of
configurations with different photon levels were included. The 3D fluence maps generated from
the highest number of photons were treated as clean data, and the rest were regarded as noisy.
For this work, all configurations were simulated with photon numbers between 105 and 109 with
a 10-fold increment. Simulations with 109 photons were selected as the “ground truth,” because
they provide the closest estimate to the noise-free solutions. Therefore, the CNN denoisers are
tasked to learn a mapping between simulations with photon numbers lower than 109 to results
simulated with 109 photons.

2.1.1 Generation of training and validation datasets

To efficiently generate a large and comprehensive corpus of representativeMC training data, first
a volume generation scheme was designed. In such a scheme, arbitrarily-shaped and -sized poly-
hedrons and random 3DAmerican standard code for information interchange (ASCII) characters
with arbitrary sizes are randomly placed inside a homogeneous background domain with random
optical properties. Using combinations of ASCII characters and polyhedrons produces a wide
variety of complex shapes, while keeping the data generation process efficient. A similar letter-
based random domain generation approach has been previously reported for training networks
for fluorescence lifetime imaging.34 A diagram showing the detailed steps for creating a random
simulation domain for generating training data is shown in Fig. 1.

Specifically, a random number (M ¼ 0 to 4) of randomly generated shapes, either in the form
of 3D polyhedrons or 3D ASCII letters, are first created as binary masks, with the same size as
the target volume. Then, the binary mask is multiplied by a label—a unique identification num-
ber assigned to each object—and subsequently accumulated in a final volume, in which voxels
marked with the same label belong to the same shape. In the process of accumulation and gen-
eration of binary masks for each shape, if two or more objects intersect, this process creates new
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inclusions for the overlapping regions. We generate all training datasets on 64 × 64 × 64 (in
1-mm3 isotropic voxels) domains, while the datasets for validation are 128 × 128 × 128 voxels.
This allows us to observe the scalability of the networks to volume sizes that are different than
the training dataset. A total of 1500 random domains are generated for training and 500 random
domains for the “validation.” During training, the average global metrics (explained in Sec. 2.4.1)
of the model computed over the validation dataset are saved over single epoch intervals. At the
end of the training, the model with the best overall metrics is selected as the final result.

To create random 3D polyhedrons, a number of points (N ¼ 4 to 10) are determined on a
sphere of random location and radius using the algorithm provided by Deserno.35 The convex-
hull of the point set is computed and randomly rotated and translated in 3D. This convex-hull is
subsequently rasterized into a binary mask.

For ASCII character inclusions, first, a random character in either lower or upper cases of
English alphabet is selected. A random font size is chosen from a specified range, and the letter is
rendered/rasterized in a 2D image with a random rotation angle and position. This binary 2D
mask is further stacked with a random thickness to form a 3D inclusion. Finally, a 3D random
rotation/translation is applied to the 3D ASCII character inclusion.

After generating a random volume, a random simulation configuration is generated to enable
simulations with MCX. This includes determining the optical properties, including the absorp-
tion (μa), scattering (μs) coefficients, anisotropy (g), and refractive index (n), for each of the
labels inside the generated volume, as well as the light source position and launch direction
for the simulation. For the training and validation datasets, only isotropic sources are used for
simplicity. The source is randomly positioned inside the domain.

The random optical properties are determined in ranges relevant to those of biological
tissues, including (1) μa ¼ jNð0.01; 0.05Þj mm−1, where Nðμ; σÞ is a normal distribution with
mean μ and standard deviation σ; (2) g is a uniform random variable between 0.9 and 1,
(3) μs ¼ μ 0

s∕ð1 − gÞ, where the reduced scattering coefficient μ 0
s ¼ jNð1; 1Þj mm−1; and 4) n

is a uniformly distributed random variable between 1 and 10. For all data, we simulate the
continuous-wave fluence for a time-gate length randomly selected between 0.1 and 1 ns. Each
simulation uses a random seed. In Fig. 2, we show a number of image slices (log-10 scale)
from 3D simulation samples ranging from homogeneous domains to heterogeneous domains
containing multiple polyhedral or letter-shaped inclusions.

2.1.2 Data augmentation

To increase the diversity of the generated dataset and avoid overfitting, data augmentation36 was
used. Our data augmentation consisted of 90-deg rotation and flipping. Each transformation was
applied independently over a randomly selected axis. Transforms were identically applied to
both inputs and labels of the training data. Both transforms were randomly selected and applied,
with a probability of 0.7. This on-the-fly strategy multiplied the data encountered by the models
during training by 256 without performing any time-consuming MC simulation.

Fig. 1 Workflow diagram for creating random simulation domains for the training/validation data.
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2.1.3 Test datasets

Three previously used standard benchmarks,16 (B1) a 100 × 100 × 100 mm3 homogeneous cube
with a 1-mm voxel size, (B2) the same cubic domain with a 40 × 40 × 40 mm3 cubic absorber,
and (B3) the same cubic domain with a refractive inclusion, were employed to characterize and
compare the performance of various denoising methods. The optical properties for the back-
ground medium, the absorbing and refractive inclusions, can be found in Sec. 3 of our previous
work.16 Each of the benchmarks was simulated with 100 repetitions using different random
seeds. Additionally, the Colin2712,37 atlas (B4), Digimouse38 atlas (B5), and University of
Southern California (USC) 19.539 atlas (B6) from the Neurodevelopmental MRI database40 were
selected as examples of complex simulation domains to test our trained MC denoisers. In addi-
tion, we also included a benchmark (B7) containing a ball-lens to test the performance of our
denoisers in low-albedo media. In this benchmark, a cubic domain of 100 × 100 × 100 grid of
0.1 mm3 isotropic voxels is filled with medium of μa ¼ 0.01∕mm, μs ¼ 1∕mm, g ¼ 0.95, and
n ¼ 1. A spherical-lens of 2-mm radius is placed in the center of the domain and filled with a
medium of μa ¼ 0.01∕mm, μs ¼ 1∕mm, g ¼ 0.9, and n ¼ 1.4. A pencil beam pointing toward
the þz axis is located at (4, 5, 0) mm. The domain volume is pre-processed to utilize the split-
voxel MC algorithm,41 which can accurately handle curved media boundaries rasterized using a
voxelated domain.

2.2 Pre-Processing of Monte Carlo Data

Many of the reported DL denoising techniques were developed to process natural images of
limited bit-depth that usually do not present the high dynamic range as in MC fluence maps.
To allow CNNs to better recognize and process unique MC image features and avoid difficulties
due to limited precision, we applied the following transformation to the fluence images before
training or inference:

EQ-TARGET;temp:intralink-;e001;116;207y ¼ tðxÞ ¼ lnðc × xþ 1Þ; (1)

where x is the MC fluence map, c is a user-defined constant, and the output y serves as the input
to the CNN. This transformation serves two purposes. First, it compresses the floating-point
fluence values to a limited range while equalizing image features across the domain. Second,
it compensates for the exponential decay of light in lossy media and reveals image contracts
that are relevant to the shapes/locations of the inclusions, assisting the CNN to learn the features
and mappings. The addition of 1 in Eq. (1) ensures that tðxÞ does not contain negative values.
An inverse transform t−1ðy 0Þ ¼ ðey 0 − 1Þ∕c is applied to the output of the CNN (y 0) to undo the
effect of this transform.

Moreover, when training a CNN on 8-bit natural image data, a common practice is to divide
the pixel values by the maximum value possible (i.e., 255) to normalize the data. From our tests,

Fig. 2 Sample MC fluence images (slices from 3D volumes) generated for CNN training.
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applying such an operation on floating-point fluence maps resulted in unstable training; therefore
our training data were not normalized.

Additionally, due to limited data precision, we noticed that all tested CNN denoisers exhibit
reduced denoising image quality when processing voxel values (before log-transformation) that
are smaller than an empirical threshold of 0.03. To address this issue and permit a wider input
dynamic range, two separate copies of the fluence maps were denoised during inference—the
first copy was denoised with c set to 1 and the second one with c set to 107. The final image is
obtained by merging both denoised outputs: voxels that originally had fluence values larger than
0.03 retrieve the denoised values from the first output and the rest are obtained from the second
output. This variable-gain approach allowed us to process MC fluence images containing both
high and low floating-point values.

2.3 Cascaded MC Denoising Network that Combines DnCNN and
UNet Networks

In this work, we designed a cascaded CNN denoiser, as shown in Fig. 3, specifically optimized
for denoising our 3D MC fluence maps by combining two existing CNN denoisers: a DnCNN
denoiser is known to be effective for removing global or spatially invariant noise, especially
AWGN, without any prior information,26 whereas a UNet denoiser is known to remove local
noise that is spatially variant.28,29 Therefore, in our cascaded DnCNN/UNet architecture, referred
to as “cascade” hereinafter, the CNN first learns the global noise of an MC fluence image and
attempts to remove it. The remaining spatially variant noise can then be captured and removed
using a UNet. In both stages, the noise is learned in the residual space, meaning that, instead of
mapping a noisy input to a clean output directly, the network maps the noisy input to a noise map
and then subtracts it from the input to extract the clean image.

We want to mention that cascaded denoisers similar to the above design have been proposed
for processing real-world images.25,42 In these works, a model-based filter (BM3D) serves as the
global denoiser to provide an improved prior to a CNN-based local denoiser. In comparison, our
method utilizes CNN denoisers for both global and local denoising stages, making it possible to
train and accelerate fully on GPUs while automatically adapting to varying levels of noise.

2.4 Denoising Performance Metrics

2.4.1 Global performance metrics

The global resemblance between the denoised volume and the ground truth (in this case, sim-
ulations with 109 photons) can be used to measure the performance of a denoiser. A number of
metrics measuring such a similarity have been used by others to evaluate image restoration
networks or measure convergence.21,26,43,44 Typically, these metrics are defined for 2D images;
in this work, we extended the definitions to apply to 3D fluence maps.

Fig. 3 Overview of the cascaded DnCNN + UNet architecture. Each block in the dashed squares
represents a group of CNN layers that are applied sequentially. The number on the square block
indicates the number of channels for the respective output tensor. Conv3D, TransConv3D, and BN
stand for 3D convolution, 3D transposed convolution, and batch normalization layers, respectively.
PyTorch function log 1pðcxÞ is a stable implementation of function lnðcx þ 1Þ.
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The most commonly used objective functions for denoising networks are the mean least
squared error (L2) and mean absolute error (L1):

EQ-TARGET;temp:intralink-;e002;116;711LnðθÞ ¼
1

K

XK
i¼1

jFðyi; θÞ − xijn; (2)

where K is the number of noisy-clean fluence map pairs sampled from the dataset, referred to as
the “mini-batch” size; θ contains all parameters of the network; F denotes the network itself; n is
either 1 or 2; and ðxi; yiÞ denotes the i’th noisy-clean pair of data in the mini-batch. These error
metrics are widely used in supervised denoising networks, including the DnCNN, DRUNet, and
ResMCNet models, as well as several other studies.25,26,28,30,42 L1 and L2 may have different
convergence properties.43 The L1 loss has gained more popularity in the DL community due
to its good performance and low computational costs.30,43 For this work, however, to penalize
large errors more, the L2 loss was used instead to train the networks.

In contrast to Ln distances, SSIM
45 provides a perceptually motivated measure that emulates

human visual perception for images. The SSIM for a pixel in an image is defined as

EQ-TARGET;temp:intralink-;e003;116;544SSIMðpÞ ¼ 2μxμy þ C1

μ2x þ μ2y þ C1

×
2σxy þ C2

σ2x þ σ2y þ C2

; (3)

where μx and σx are the mean and standard deviation of the image x, respectively, and σxy is the
co-variance of images x and y. The statistics are calculated locally by convolving both volumes
with a 2D Gaussian filter with σG ¼ 5. Small constants C1 and C2 are used to avoid division by
zero. The SSIM value of two images is the average SSIM computed across all pixels, with a
value of 1 suggesting that the two images are identical, and a value of 0 suggesting that the two
images are not correlated. This definition can also be applied to 3D fluence maps using a 3D
Gaussian kernel to calculate neighborhood statistics.

Another metric, peak signal-to-noise ratio (PSNR), measures the ratio between the maximum
power of a signal and the power of the noise.46 The PSNR for two volumes x and y is expressed
as

EQ-TARGET;temp:intralink-;e004;116;377PSNRðx; yÞ ¼ 20 log10

�
Imaxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffikx − yk2

p
�
: (4)

Larger PSNR values indicate smaller L2 distances between volumes. The Imax value is the
maximum value that a voxel can have in a fluence map after the transformation in Eq. (1).
Therefore, in this work, we set Imax to 40.

2.4.2 Local performance metrics

A number of locally (voxel-bound) defined performance metrics have been used in our previous
MC denoising work.16 The SNR of the denoised volumes for each voxel measures the efficacy of
the denoiser of spatially adaptive noise. For a simulation running k photons, we first run multiple
(N ¼ 100) independently seeded MC simulations and compute SNR in dB with

EQ-TARGET;temp:intralink-;e005;116;213SNRkðrÞ ¼ 20 log10
μkðrÞ
σkðrÞ

; (5)

where μk and σk are the mean and standard deviation of voxel values at location r across all
repetitions, respectively. The average SNR difference before and after applying the denoising
filter, ΔSNR, is subsequently calculated along selected regions of interest.

Our previous work16 suggests that the noise in MC images largely follows the shot-noise
model; therefore, increasing the simulated photon number by a factor of 10 results in ∼10 dB

improvement in SNR on average. We have previously proposed a photon number multiplier16

MF to measure equivalent acceleration using the average SNR improvement ΔSNR:

EQ-TARGET;temp:intralink-;e006;116;86MF ¼ 10
ΔSNR
10 : (6)
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For example, a ΔSNR ¼ 20 dB gives MF ¼ 100, suggesting that the denoised result is
equivalent to a simulation with 100 times the originally simulated photon number, which is
equivalent to accelerating the simulation by a factor of 100 if the denoising run-time is ignored.

2.5 Implementation Details

2.5.1 BM4D and ANLM

Block-matching four-dimensional collaborative filtering (BM4D) and our GPU-accelerated
adaptive non-local means (ANLM)16 are used as representative state-of-the-art model-based
denoisers and used to compare against CNN-based denoisers. For BM4D, a Python interface
developed based on the filter described by Mäkinen et al.47 was used, whereas for the ANLM
filter, a MATLAB function developed previously by our group16 was used.

2.5.2 CNN training details

All CNN denoising networks were re-implemented for handling 3D data using the open-source
DL framework, PyTorch.48 For most of the studied CNN denoisers, our implementations largely
follow their originally published specifications but replacing the 2D layers with their 3D var-
iants. Small adjustments were made. For UNet, for example, 3D batch normalization (BN) layers
were introduced in between the 3D convolution, the convolution transpose, and the pooling
layers to address the covariance shift problem.49 Additionally, we simplified ResMCNet by
removing the auxiliary features needed for computer graphics renderings purposes, making the
kernel size of the first layer 3 instead of 7.

All networks in this study were trained for 1500 epochs on a single NVIDIA DGX node
equipped with eight NVIDIA A100 GPUs, each with 40 GB of memory and NVLink 2.0 con-
nection. Leveraging the PyTorch scaling wrapper, PyTorch Lightning50 was used to simplify the
implementation process. We need high-performance hardware because a forward propagation of
the CNN for a 64 × 64 × 64 voxelated volume requires around 6 GB of GPU memory; to use a
batch size of 4 per GPU (i.e., processing four data pairs in parallel), at least 24 GB of memory is
necessary. Furthermore, using all 8 GPUs in parallel combined with the high-speed NVLink
connection reduces the average training time from 10 days (on a single A100 GPU) to 24 h
for each network tested—the cascade and DRUNet usually require longer training times com-
pared with those of DnCNN and UNet.

The networks were all trained using the Adam with weight decay regularization optimizer,51

with a weight decay of 0.0001 for the parameters in all layers, except for the BN parameters and
bias parameters. The learning rate was scheduled with a cosine annealing learning rate,52 using
1000 linear warm-up mini-batch iterations to added learning stability.53 A batch-size of four per
GPU was selected to maximize the effective use of GPU memory resources. The base learning
rate was set to 0.0001. The gradient clipping value was set to 2 for BN layers and 1 for other
layers to avoid exploding gradients and faster training.54 The optimization, data augmentation,
and configuration sections of the codebase for this work were inspired by the open-source
PyTorch Connectomics package55 for easier prototyping of the trained models.

3 Results

3.1 Denoising Performance

In Fig. 4, we visually compare the fluence maps before and after denoising for each tested deno-
iser and photon number (105 to 108) for three standard benchmarks16 (B1, B2, and B3). Table 1
summarizes the global metrics derived from the outputs of each denoiser; computed local metrics
including mean ΔSNR and MF are given in Table 3. Each entry in both tables is averaged from
100 independently seeded repeated simulations. In both tables, the best-performing metrics are
highlighted in bold. Similarly, a visual comparison between those from more complex domains,
including Colin27, Digimouse, USC-19.5 atlases, and the ball-lens benchmark, are shown in
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Fig. 5. The corresponding global metrics are summarized in Table 2. Due to limited space, in
Fig. 5, we only show representative images with 105 and 107 photons, and we removed DnCNN
and BM4D due to their relatively poor performance. For the same reason, BM4D global metric
results were removed from Table 2.

From the denoised images shown in Fig. 4, we can first confirm that all CNN-based denoisers
show noise-adaptive capability similar to ANLM and BM4D—they apply a higher level of
smoothing in noisy areas within low-photon regions and apply little smoothing in areas with
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Fig. 4 Comparisons between various denoisers in three benchmarks: (a) a homogeneous cube
and the same cube containing inclusions with (b) absorption and (c) refractive-index contrasts.
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sufficient photon fluence. From Fig. 4(c), we can also observe that all CNN denoisers show
edge-preservation capability, again similar to ANLM and BM4D. Both noise-adaptiveness and
edge-preservation are considered desirable for an MC denoiser.16 Because all CNN networks
were trained on images of 64 × 64 × 64 voxels whereas all three benchmarks shown in
Fig. 4 are 100 × 100 × 100 voxel domains, these results clearly suggest that our trained networks
can be directly applied to image domain sizes that are different from the training domain size.

By visually inspecting and comparing the denoised images in Figs. 4 and 5, we observed that
all CNN-based methods appear to achieve significantly better results compared with model-
based denoising methods (BM4D and GPU ANLM); such difference is even more pronounced
in low-photon simulations (105 and 106 photons). Although the CNN denoisers were trained on
shapes with less complexity, the images in Fig. 5 indicate that they are clearly capable of denois-
ing novel structures that are significantly complex, yielding results that are close to the respective
ground truth images. However, we also observe that the denoiser’s ability to recover fluence
maps varies depending on the photon level in the input data—in areas where photons are sparse,
the denoisers understandably create distortions that deviate from the ground truth. This can be
seen clearly in the results of the complex benchmarks B4 to B7 at 105. Nevertheless, these
distorted recovered areas are still significantly better estimates than the input in the same area
without denoising.

To confirm that CNN denoisers can produce unbiased images, the means and SNRs from
benchmarks B1, B2, and B3 along the line x ¼ 50 and y ¼ 50 were calculated and plotted in

Fig. 5 Comparisons between various denoisers in four complex benchmarks: (a) Colin27,
(b) Digimouse, (c) USC-195 atlases, and (d) ball-lens benchmark.
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Fig. 6. For brevity, we only report the results from the cascade network as representative of all
CNN methods in this plot. These plots confirm that the cascade method does not alter the mean
fluence of the simulations over the plotted cross section, while providing a consistent SNR
improvement across a wide range of photon numbers. It also demonstrates the adaptiveness
of CNN denoisers in that SNR improvement starts to decline in areas with high fluence value
(thus lower noise due to shot-noise). The ∼12-dB SNR improvement shown by denoising sim-
ulations with 109 photons (purple dotted lines over purple solid lines in the SNR plots) indicate
that the cascade denoiser is capable of further enhancing image quality even it was not trained
using simulations with more than 109 photons. Such an SNR improvement is not as high as that
reported from low-photon simulations, yet it is still significantly higher than the best SNR
improvement produced using the GPU ANLM denoiser (dashed lines) of all tested photon
numbers.

Our earlier observation that most CNN-based denoisers outperform model-based denoisers
(GPU ANLM and BM4D) is also strongly evident by both the global metrics reported in Table 1

(a)

(b)

(c)

Fig. 6 Plots of the means (left) and SNRs (right) before (solid) and after denoising using cascade
network (dotted) and GPU-ANLM (dashed) in 3 benchmarks (a) B1, (b) B2, and (c) B3 along a
cross section.
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and the local metrics reported in Table 3. Among all tested CNN filters, the cascade network
offers the highest performance in all tests with 105 photons and comes close to the best per-
former, ResMCNet, among the 106 test sets. Among the 107 photon levels, DRUNet is a strong
performer, with ResMCNet and cascade coming close to or surpassing it in some cases. Among
the real-world complex domain benchmarks shown in Table 2, cascade reports the best perfor-
mance in almost all cases, with UNet performing slightly better on USC-195 with 105 photons
and ResMCNet giving better SSIM results.

From Table 3, we can observe that all CNN-based denoisers appear to offer a five- to eight-
fold improvement in SNR enhancement compared with our previously reported model-based
GPU ANLM filter16; our cascade network reports an overall SNR improvement between
14 to 19 dB across different benchmarks and photon numbers. This is equivalent to running
25× to 35× more photons in heterogeneous domains, and nearly 80× more photons for the
homogeneous benchmark (B1). In other words, applying our cascade network for an MC
solution with 105 photons can obtain a result that is equivalent to running ∼2.5 × 106 photons.
In fact, except for DnCNN, the majority of our tested CNN-based denoisers can achieve a similar
level of performance.

3.2 Assessing Equivalent Speedup Enabled by Image Denoising

In Table 4, we report the average runtimes (in seconds) of MC simulation and denoising (i.e.,
inference for CNN denoisers). Each test case runs on a single NVIDIA A100 with 40 GBs of
memory with over 100 trials, and the time needed to transfer data between the host and the GPU
is included. As we mentioned in Sec. 2.2, to obtain every denoised image, we apply CNN infer-
ence twice to handle the high dynamic range in the input data.

Table 3 suggests that, on average, about a 20 to 30 photon multiplier (MF) is to be expected
for most CNN denoisers, meaning the denoised simulations will have 20 to 30 times more pho-
tons than its input. Therefore, our goal is to identify cases in which the sum of the runtime of the
baseline MC simulation running on N photons, TMCðNÞ, and that of the denoiser (Tf) is shorter
than an MC simulation running MF × N photons, i.e., TMCðNÞ þ Tf < TMCðMF × NÞ. Due to
space limitations, we are unable to list all combinations of simulations that satisfy the above

Table 4 Average runtimes (in seconds) for MC forward simulations (TMC ) and denoising (T f )
across all benchmarks, measured on an NVIDIA A100 GPU. The runtimes include memory trans-
fer operations.

Benchmark B1 B2 B3 B7 Colin27 (B4) Digimouse (B5) USC 195(B6)

Domain size 100 × 100 × 100 181 × 217 × 181 190 × 496 × 104 166 × 209 × 223

MC (TMC [s]) 105 0.34 0.34 0.31 0.25 0.57 0.54 0.57

106 0.66 0.67 0.44 0.27 1.16 0.72 1.07

107 1.93 1.91 1.14 0.40 2.76 1.49 2.56

108 10.70 10.72 6.59 1.69 13.66 7.26 12.00

109 87.01 87.58 55.65 14.61 105.60 58.87 90.36

Denoising
(T f [s])

Cascade 0.27 2.93 12.08 3.06

UNet 0.11 2.91 12.08 3.07

ResMCNet 0.37 2.77 15.55 3.01

DnCNN 0.19 1.41 8.76 1.50

DRUNet 0.34 2.23 10.27 2.39

GPU-ANLM 0.22 0.55 0.69 0.60
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condition. However, our general observations include the following: (1) the CNN inference run-
time is independent of the number of simulated photons; (2) DnCNN is typically faster than other
CNN denoisers, but it also has the poorest performance among them from Table 3; (3) the larger
the domain size is, the longer it takes for CNN denoisers to run; and (4) generally speaking,
applying CNN denoisers to simulations with 107 photons or above can result in a significant
reduction of total runtime.

In our previous work,16 we had also concluded that 107 photon is a general threshold for
GPU-ANLM to be effective; however, from the runtime data reported here using NVIDIA
A100 GPUs, GPU-ANLM appears to also benefit simulations with 106 photons, likely due to
the high computing speed of the GPU. Nonetheless, comparing to most tested CNN denoisers,
the GPU-ANLM denoiser offers dramatically less equivalent acceleration despite its fast speed.

4 Conclusion

In summary, we have developed a framework for applying state-of-the-art DL methods for
denoising 3D images of MC photon simulations in turbid media. A list of supervised CNN
denoisers, including DnCNN, UNet, ResMCNet, and DRUNet, were implemented, extended
for processing 3D data, and tested for denoising MC outputs. In addition, we have developed
a customized cascaded DnCNN/UNet denoiser combining the global-noise removal capability of
DnCNN and local-noise removal capability of UNet. All developed MC denoising networks
were trained using GPU accelerated MCX simulations of random domains to learn the under-
lying noise from MC outputs at a range of photon numbers. A simple yet effective synthetic
training data generation approach was developed to produce complex simulation domains with
random inclusions made of 3D polyhedral and ASCII characters with random optical properties
and simulation parameters. In addition to following current best practices of contemporary CNN
and DL development, we have also specifically fine-tuned and customized our MC denoisers to
better handle the unique challenges arising in denoising 3D MC data. For example, to handle the
high dynamic range in MC fluene maps using CNNs, a reversible log-mapping scheme was
applied to each volume before being fed to the models. In addition, we have also applied infer-
ence twice and combined the results to further enhance the dynamic range of the input data.
All reported CNN MC denoisers have been implemented in the Python programming language
using the PyTorch framework, with both source codes and training data freely available to the
community as open-source software.

To evaluate the efficacy of these proposed CNN denoisers, we have constructed seven stan-
dard benchmarks—three simple domains and four complex ones—from which we have derived
and reported both global performance metrics (such as SSIM and PSNR) and local performance
metrics (such as ΔSNR and MF). From our results, all tested CNN-based denoisers offered sig-
nificantly improved image quality compared with model-based image denoisers such as GPU-
ANLM and BM4D in this particular application. Overall, most CNN denoisers provide a 10- to
20-dB SNR improvement on average, equivalent to running 10- to 100-fold more photons.
Among these CNN denoisers, our proposed cascade network outperformed most of the
state-of-the-art spatial domain denoising architectures and yielded the best image quality for
low-photon simulations with 105 and 106 photons. Its performance is on-par with or only slightly
inferior to DRUNet in high-photon simulations (107 photon) in simple domain tests. For all
benchmarks involving real-world complex domains, the cascade network yielded the highest
global metrics in nearly all tests. In comparison, some of the most effective model-based image
denoisers such as the GPU-ANLM filter that we proposed previously16 only yielded 3 to 4 dB
improvement, despite being relatively fast to compute. It is worth noting that the cascade
network yielded an impressive 80-fold equivalent speedup when processing low-image-feature
simulations such as a homogeneous domain.

From our tests, CNN denoisers demonstrate superior scalability to input data sizes and input
image qualities. Although our training data were produced on a 64 × 64 × 64 voxelated space
with relatively simple shapes, all tested CNN denoisers show no difficulty in handling images
of larger sizes or significantly more complex inclusions. Our cascade network also reported
a 12-dB average SNR improvement when being applied to denoise baseline simulations with
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109 photons—the level of photon number that was used as the ground truth for training. This
suggest that these CNN denoising architectures may not be strictly limited by the quality of the
data that they are trained on.

From our results on runtimes, most CNN denoiser inference (including two passes) time
ranges between less than a second to a dozen seconds, regardless of the input data quality.
We concluded that, to yield an overall shorter total runtime, applying CNN denoisers to process-
ing MC images generated from 107 photons or more can generally lead to significantly improved
computational efficiency.

One of the limitations of the current work is the relatively long training time. To train each
denoising network using our synthetic dataset of 1500 random domains (each with five photon
number levels with multiple rotated views) requires on average a full day (24 h) if running on a
high-end 8-GPU server with large-memory NVIDIA A100 GPUs (40 GB memory allows for
using a batch-size of 4 for acceleration). If running on a single GPU node, we anticipate that the
required training time is around 10 to 12 days on a single A100 GPU and even longer for low-
memory GPUs. Experimenting with the number of layers in each model to reduce the number of
intermediate tensors while retaining the performance benefits reported in this work, as well as the
development of new and significantly more compact DL-based denoisers, will be the focus of
our future work. Moreover, some of the training parameters were determined empirically and
deserve further optimization. For example, we trained the networks over 64 × 64 × 64 domains.
It will be significantly faster if we can reduce the training data size while still retaining the
scalability to arbitrarily sized domains. Additionally, the landscapes of CNN architecture and
denoising networks are constantly being updated and improved over the past few years. We
cannot exhaust all emerging CNN denoisers and would be happy to extend this work with newer
and more effective CNN denoising architectures in the future.

To conclude, we strongly believe that investigating high-performance image denoising
techniques offers a new direction for researchers seeking for the next major breakthrough
in speed acceleration for MC simulations. DL- and CNN-based image denoising techniques
have demonstrated impressive capabilities compared with the more traditional model-based
denoising methods and have yielded notable image quality enhancement that is equivalent
to running 10 to 50 times more photons, which can be directly translated to a 10- to 50- fold
speedup, in most of our tested benchmarks. Our cascade denoising network even reported
a nearly 80-fold equivalent speedup when denoising homogeneous domain results—a level
of acceleration that we were only able to witness when migrating MC from single-threaded
computing to massively parallel hardware over a decade ago.11–13 With the combination of
advanced image processing methods and new simulation techniques, we anticipate that
MC will play an increasingly important role in today’s biomedical optics data analysis and
instrument development.
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