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ABSTRACT. Significance: As biological tissues are highly heterogeneous, there is a great inter-
est in developing non-invasive optical approaches capable of characterizing them in
a very localized manner. Obtaining accurate absolute values of the local optical
properties from the measured reflectance requires finding a probe geometry, which
allows us to solve this inverse problem robustly and reliably despite neglecting the
higher-order moments of the scattering phase function.

Aim: Our goal is to develop a theoretical framework for designing tilted-fiber diffuse
reflectance probes that allow quantitative estimation of the optical properties corre-
sponding to limited tissue volume (typically a few cubic millimeters).

Approach: Relationships among probe geometry, sampled tissue volume, and
robustness of the inverse solver to calculate optical properties from reflectance are
studied using Monte Carlo simulations.

Results: The analysis of the number of scattering events of the collected photons
leads to the establishment of relationships among the probe geometry, the sampled
tissue volume, and the validity of a subdiffusive regime for the reflectance.

Conclusions: A methodology is proposed for the design of new compact probes
with tilted fiber geometry that can quantitatively estimate the values of the optical
coefficients in a localized manner within living biological tissues by recording diffuse
reflectance spectra.
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1 Introduction
Spatially resolved diffuse reflectance spectroscopy (srDRS) is a technique capable of non-
invasively characterizing biological tissues in vivo.1–3 It simultaneously reveals information
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about the absorption and scattering properties of a tissue, the so-called intrinsic optical properties
(IOPs). These properties offer relevant information about tissue histoarchitecture and physiologi-
cal processes. The absorption spectra reveal key information about tissue biochemistry through
the concentration of the chromophores (e.g., oxy- and deoxyhemoglobin, melanin, water con-
tent),4 whereas the scattering spectra offer an insight into the morphology of the cellular structure
by revealing changes in the cell concentration and size distribution.5,6 Typical DRS setups
include one illumination fiber and several collection fibers at different source–detector separa-
tions (SDSs). As the backscattered light depends on the SDSs and IOPs, an inverse problem that
takes into account the geometry of the experimental set-up must be solved to recover the IOPs
from the measured diffuse reflectance spectra. The forward problem of modeling the photon
propagation inside the tissue as a function of the experimental set-up geometry and the optical
coefficients is typically solved through Monte Carlo (MC) simulations. A common assumption
in the numerical model is that the volume sampled by the light is homogeneous. However,
biological tissues are organized into different specialized structures, which challenge this
assumption of homogeneity. To increase the likeliness of the sampled volume being homo-
geneous, a usual approach is to attempt to reduce the volume sampled by the light inside the
tissue to probe the tissue locally, i.e., to possibly probe a specific tissue structure. Such a reduc-
tion of the sampled volume can be done either by reducing the SDSs7 or by tilting the light
injection and collection fibers with respect to the tissue surface.8 Both these strategies have the
benefit of reducing the probed tissue volume, but they come at the expense of a more complex
photon migration model. This is because the contribution of the scattering phase function, which
describes the probability distribution of the scattering direction, to the backscattered light cannot
be reduced to a limited number of its Legendre moments if the collected photons have undergone
too few scattering events.9,10 By contrast, a very large SDS allows the use of the well-known
diffusion approximation,11 which corresponds to a contribution of the phase function reducing to
its first moment; a shorter SDS must include higher-order moments of the phase function. An
empirical criterion based on the product of the SDS and the reduced scattering coefficient
(ρμ 0

s > 0.5) was shown to be effective in characterizing the limits of the subdiffusive regime
using a second-order approximation of the phase function.7 This criterion was developed for
an experimental setup using optical fibers placed perpendicularly to the tissue’s surface under
a restricted range of IOPs. In this work, a more generalized criterion based on the physics of
multiple scattering applicable to any geometry of the experimental set-up and any IOPs of the
probed sample is proposed. This criterion can then be used to identify the minimum SDS (ρmin)
required to satisfy the conditions of the second-order approximation of the phase function. For
SDS shorter than those defined by this criterion, Legendre moments higher than order 2 will
begin to contribute significantly to the backscattered signal collected. In addition, the effects
of the maximum SDS (ρmax), resulting from the spatial distribution of the detection fibers,
on both the robustness of the inverse problem to calculate the IOPs and the size of the tissue
volume sampled by the backscattered light are explored. All in all, by studying these different
relationships among the probe geometry (spatial distribution of the fibers, tilt angles), the main-
tenance of a subdiffusive regime for the diffuse reflectance, the size of the tissue volume sampled
by the backscattered light, and the robustness of the corresponding IOP determination, we pro-
pose a methodology based on our multiple scattering criterion, which allows designing a probe
geometry capable of robustly and quantitatively calculating the IOPs corresponding to a limited
sampled tissue volume.

2 Physical Model: Monte Carlo Simulation, Scattering Phase
Function, and Probe Geometry

A custom Monte Carlo program12 is used to model light scattering inside tissues. A semi-infinite
space is assumed in the simulations. A schematic representation of the geometric parameters of
the problem is given in Fig. 1. This example represents two fiber combinations at different
source–detector separations (ρ) and different tilt angles (θ). The tilt angle is defined with respect
to the normal of the surface. Although the tilt of the illumination and detection fibers may be
adjusted individually, they are here set to be equal and are tilted in opposite directions to reduce
the number of parameters in the problem. The refractive index of the tissue is set to 1.43,
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a common assumption in the literature.13 The diameter of the fibers is set to 0.1 mm and the
numerical aperture to 0.4, which are common values in DRS setups.14 In all simulations, 108

photons are launched, which results in a mean uncertainty of ∼4% for the range of SDS con-
sidered in this work. This high number of photons is required for simulating tilted fibers because
the radial symmetry that can be exploited for perpendicular fibers is broken, which implies a
slower convergence of the computed reflectance.

The scattering phase function describes the probability per unit solid angle of a change of
direction ŝ to ŝ 0. Under the assumption that the medium is isotropic, the scattering angle θ is
independent of the initial direction, so pðŝ · ŝ 0Þ ¼ pðcos θÞ. The moments of the phase function
are defined as15

EQ-TARGET;temp:intralink-;e001;117;404gn ¼
Z

1

−1
Pnðcos θÞpðcos θÞdðcos θÞ; (1)

where Pn is the Legendre polynomial of order n. An analytical phase function only exists for
particular cases, e.g., for a dielectric sphere using Mie theory.15 Various phase functions have
been proposed to model more complex media such as biological tissues.10 The Henyey–
Greenstein (HG) phase function is often used9,16,17 because its assumption of the fractal size
distribution of the scatterers is a reasonable approximation for biological tissue and because
it has the further benefit of being a convenient one-parameter function for which the asymmetry
parameter is given by the parameter g1 ¼ gHG

EQ-TARGET;temp:intralink-;e002;117;284pHG ¼ 1 − g2HG
ð1þ g2HG − 2gHG cos θÞ3∕2 gn ¼ gnHG: (2)

However, the HG phase function was shown to underestimate the backscattering intensity.18

Because the first moment determines all the subsequent moments in the HG phase function, the
backscattering intensity cannot be adjusted to better represent experimental results. To correct
this drawback, the modified Henyey–Greenstein (MHG) was proposed18

EQ-TARGET;temp:intralink-;e003;117;197

pMHG ¼ αpHGðθÞþ ð1 − αÞ 3

4π
cos2 θ

g1 ¼ αgHG; g2 ¼ αg2HG þ 2∕5ð1 − αÞ; gn ¼ αgnHG for n > 2; (3)

where α can vary between 0 and 1. In the MHG phase function, the g2 moment can vary inde-
pendently of the first moment, but all subsequent Legendre moments are determined by the initial
choice of g1 and g2. As we are interested in analyzing the effect of the higher-order moments
(gn>2) on the reflectance measurement, a second phase function that can mimic the first two
moments of the MHG function but with different higher-order moments is used. The modified
power of cosines (MPC) phase function is15

Fig. 1 Schematic of a DRS setup using two fiber combinations. The fibers of combination 1 are at a
greater SDS and tilt angle, but they result in a similar sampled depth to that of combination 2, which
has fibers at shorter SDS with a tilt angle of 0 deg.
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EQ-TARGET;temp:intralink-;e004;114;736

pPC ¼ 1

4π

Nþ 1

2N
ð1þ cos θÞN

gPC1
¼ N∕ðNþ 2Þ; gPCn

¼ gPCn−1
ðN − nþ 1Þ∕ðNþ nþ 1Þ for n > 1

pMPC ¼ αpPC þð1 − αÞ 3

4π
cos2 θ

g1 ¼ αgPC1
; g2 ¼ αgPC2

þ 2

5
ð1 − αÞ; gn ¼ αgEn

for n > 2: (4)

The first Legendre moments give the general shape of the phase function, whereas the
higher-order moments give the finer details of the phase function.19 As photons undergo many
scattering events, the effects of the scattering phase function on reflectance can be approximated
with a limited number of Legendre moments. For example, the well-known diffusion approxi-
mation corresponds to a reflectance that depends only on the first moment, which can be com-
bined to μs through the introduction of the reduced scattering coefficient, μ 0

s ¼ μsð1 − g1Þ. This
implies that, under the condition that photons have scattered enough times, different μs and g1
combinations leading to the same μ 0

s value result in the same reflectance value. Bevilacqua et al.14

later proposed a way of taking into account the second moment by introducing a parameter γ ¼
ð1 − g2Þ∕ð1 − g1Þ that depends only on the characteristics of the phase function and was shown
to be related to the size distribution of the scatterers in the tissue.20 By taking into account a
second Legendre moment, the condition on the number of scattering events required for the
approximation to hold is relaxed, meaning that the approximation is valid at shorter SDS than
for the first-order approximation. Higher-order approximations have also been proposed in the
literature,21,22 but although they allow working at even shorter SDS, they have not been linked to
any physical characteristic of the scatterers and they add considerable complexity to the inverse
problem. With the MHG and MPC phase functions in hand, we are now in a position to study
what conditions, in terms of number of scattering events, the backscattered photons must satisfy
so that moments of order higher than 2 of the phase function do not significantly affect the
reflectance signal. In Sec. 3.3, these conditions are defined in terms of the number of photon
scattering events to form a criterion.

Using a second-order approximation, there are thus three IOPs to estimate: μ 0
s, γ, and μa. A

measurement from a single fiber is not sufficient to obtain a robust and quantitative estimation of
these three IOPs. Typical DRS setups measure the reflectance at different SDSs. The larger the
SDS, the longer the photon path length (L) inside the tissue. A wide variety of path lengths
strengthens the effect of absorption on the backscattered signal, leading to a more accurate deter-
mination of the absorption coefficient estimation. Indeed, according to the Beer–Lambert equa-
tion, the photon packets are weighted as a function of a combination of their path length and
absorption coefficient: IðL; μaÞ ¼ I0e−μaL. Using fibers that collect photons with shorter and
longer paths, i.e., sampling a large range of L, allows us to discriminate more clearly the effect
of absorption on the signal. Increasing the SDS, however, also increases the sampled depth. A
compromise must be made between the estimation robustness and the requirement for a limited
probed tissue volume. This methodology for selecting ρmin and ρmax is intended to provide a
framework for designing new DRS probes with tilted-fiber geometries that allow quantitative
IOP estimation within a limited tissue volume. This allows the backscattered signal to be accu-
rately described by the IOPs μa, μ 0

s, and γ, i.e., without a significant influence of the higher-order
Legendre moments (gn>2) and consequently to be able to robustly determine these three IOPS
from the measured reflectance.

3 Determining the Minimum SDS: a Criterion Based on the
Number of Scattering Events

3.1 Effect of Neglecting Higher-Order Moments
The effect of neglecting the higher-order moments when the conditions for the second-order
approximation have not been satisfied has an influence both on the forward model and the inverse
solver. To show the effect of the higher-order moments on the forward problem, IOPs typical of
biological tissues in the visible wavelength range are used,13 namely, μ 0

s ¼ 2 mm−1, γ ¼ 1.5, and
μa ¼ 0.2 mm−1, labeled case #1. Monte Carlo simulations are performed for identical optical
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setups and IOPs but with different phase functions (either MPC or MHG). This guarantees that
the difference in the reflectance curves is solely due to the difference in moments of order higher
than 2. Figure 2(a) shows the reflectance value of each detection fiber as a function of their
distance from the illumination fiber using the MHG (circle markers) and MPC (triangle markers)
phase functions for fibers perpendicular to the surface (in blue) and with a 40 deg tilt angle (in
orange). We see that, when the ρμ 0

s > 0.5 mm criterion is met (in this case, at ρ ¼ 0.25 mm), the
reflectance difference remains less than 10% for fibers perpendicular to the surface, as opposed to
a tilted-fiber geometry. This shows that the aforementioned criterion depends on the fiber geom-
etry. This is because the greater the tilt, the shorter the photon path length for a given distance ρ
between the illumination and collection fibers. A shorter photon path length implies that the
photons have undergone fewer scattering events, so the contribution of the higher-order moments
to the reflectance remains more important.

Neglecting higher-order moments for short SDS also affects the solution of the inverse
problem.23,24 The non-linear inverse problem is usually solved by minimizing a cost function
such as the relative error

EQ-TARGET;temp:intralink-;e005;117;350ðμ 0�
s ; γ�; μ�aÞ ¼ min

μ 0
s;γ;μa

C; (5)

EQ-TARGET;temp:intralink-;e006;117;308C ¼
X
ρ

jRsimðρ; μ 0
s; γ; μaÞ − RexpðρÞj
RexpðρÞ

: (6)

A cost function based on the relative error was found preferable to one based on the absolute
error as the latter gives a much larger weight to the fibers at shorter SDS, which negatively
impacts the absorption coefficient estimation. A quadratic function such as the root mean square
error is also a common cost function choice, but it is more sensitive to measurement errors as it
strongly penalizes larger errors.23 There are two sources of error in the computed reflectance: the
numerical uncertainty from the Monte Carlo simulation and the uncertainty arising from the
neglected higher-order moments. To mitigate the numerical uncertainty, a very high number
of photons (108) was used in the simulations, which resulted in a numerical uncertainty much
smaller than the one caused by the higher-order moments. It can be expected that a large error
from the higher-order moments in the simulated reflectance curves impacts the solution
ðμ 0�

s ; γ�; μ�aÞ of the inverse problem. To investigate the effect of the higher-order moments on
the solution of the inverse solver, synthetic data (Rexp) are generated with the MPC phase func-
tion, and the IOPs are estimated assuming the MHG phase function (Rsim). To find the IOPs that
minimize the cost function, a large look-up table (LUT) is generated using the MHG phase func-
tion covering a large range of realistic optical coefficients: μ 0

s ∈ ½0.25; 3� mm−1, γ ∈ ½1.0; 2.0�,
and μa ∈ ½0;1� mm−1 with 40 points discretized along each axis. Synthetic data are generated for
the properties of case #1 using the MPC phase function. The choice of the MHG phase function
for generating the LUTand the MPC phase function to generate the synthetic data is based on the

Fig. 2 (a) Reflectance curves using the MHG and MPC phase function as a function of ρ for differ-
ent fiber tilt angles. (b) Estimation error as a function of ρmin with three detection fibers spaced at
0.1 mm of each other. The MPC phase function is used to generate the synthetic data, and the
MHG phase function is used to estimate the IOPs.
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fact that the MHG phase function is generally used to construct the LUT and invert experimental
data. It is more commonly used in biomedical optics as it stems from reasonable assumptions, i.e.,
the size of the scatterers follows a fractal distribution, whereas the MPC phase function is purely a
mathematical tool to obtain identical g1 and g2 moments with different higher-order moments.

To visualize the effect of the higher-order moments on the IOP estimation, three detection
fibers placed at ρmin, ρmin þ 0.1 mm, and ρmin þ 0.2 mm are used to assess the properties of the
medium. The estimation error using these three detection fibers is plotted as a function of ρmin in
Fig. 2(b). We see that the estimation error decreases as the minimum SDS increases. This is
because the effect of the higher-order moments decreases at higher SDS, which allows for a
more accurate estimation of the IOPs.

3.2 Legendre Moments in Multiple Scattering
The scattering phase function describes the angular distribution of the scattered photons in the
case of a single scattering event. After multiple scattering events, the concept of effective phase
function can be used to describe the resulting angular distribution of the scattered photons. The
effective phase function can be calculated numerically through Monte Carlo simulations, where
the cosine of the direction after two scattering events is given by25

EQ-TARGET;temp:intralink-;e007;114;532 cos θn ¼ cos θ1 cos θ2 þ sin θ1 sin θ2 cos ϕ1;2; (7)

where θn is the resulting direction, θ1 and θ2 are the directions of the polar angles in the scattering
plane of each event, and ϕ1;2 is the azimuthal angle of the second scattering event relative to the
first one.25 To calculate more than two collisions, the process can be repeated iteratively by updat-
ing cos θn → cos θ1 and by sampling a new θ2 and ϕ2. Figure 3 shows an example of the effec-
tive phase function after 1, 5, and 10 scattering events with the first two moments of the initial
phase function set to 0.9 and 0.85. It appears clear that the effective phase function tends to
isotropy as light undergoes scattering events.

Another way to understand the convergence of the effective phase function toward isotropy
is to observe the decay of the Legendre moments. The Legendre moments for the effective
phase function can be calculated using Eq. (1). Figure 3 shows the convergence of the first
three Legendre moments of the effective phase function as a function of the number of
scattering events. The decay of the first Legendre moment (the mean cosine) in the multiple
scattering regime has been shown to decrease as a function of gs where s is the number of scatter-
ing events.26,27 This decay of the first Legendre moment is independent of the choice of the phase
function. The theoretical reason for this decay can be understood by analyzing the rotation matrix
applied to model photon scattering. Through a statistical analysis of the rotation matrices applied
at every scattering event, it was shown that26 hcos θis ¼ hcos θis. In other words, the mean
cosine after s scattering events is equal to the mean cosine of the original phase function to the
power s. The decay of the second moment can be similarly obtained26 from

Fig. 3 (a) Effective phase function after 1, 5, and 10 scattering events, and (b) first three Legendre
moments of the effective phase function as a function of the number of scattering events.
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EQ-TARGET;temp:intralink-;e008;117;736hcos2 θis ¼ 1þ 2

�
3hcos2 θi − 1

2

�
s

: (8)

3.3 Proposed Criterion
From the previous observations, it appears clearly that a criterion guaranteeing a minimal effect
of the higher-order Legendre moments should depend on the number of scattering events of the
photons collected at a detection fiber. Figure 4 compares the effective phase after one and ten
scattering events expressed by the Legendre series expansion with a limited number of moments.
We see that, after a single scattering event, the phase function approximation with the first seven
Legendre moments remains a poor representation of the actual MHG phase function. On the
other hand, after 10 scattering events, the effective phase function can be accurately represented
by the first two Legendre moments.

However, the convergence speed of the effective phase function toward isotropy depends not
only on the number of scattering events but also on the initial shape of the phase function.
Figure 5 shows the MHG and MPC effective phase functions with identical g1 and g2 after one,
two, and three scattering events for two cases. The first case corresponds to low ðg1; g2Þ values,
which represent a flatter phase function, whereas the second case has higher ðg1; g2Þ values cor-
responding to a forward-peaked phase function. We see that, in both cases, the functions con-
verge toward each other as the number of scattering events increases because the effect of the
higher-order moments decreases, but they do so at a different speed. This is because a very nar-
row phase function will converge to isotropy much more slowly than a flatter phase function.
This can be observed mathematically in the exponential decay of the mean cosine and by the
decay of the second moment in Eq. (8).

Fig. 4 Effective phase function and approximation using a limited number n of Legendre moments
after 1 scattering event (a) and 10 scattering events (b).

Fig. 5 Effective MHG and MPC phase functions after 1, 2, and 3 scattering events with lower
g1 ¼ 0.6, g2 ¼ 0.4 values (a) and higher values g1 ¼ 0.9, g2 ¼ 0.85 (b).
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These results show that, as photons undergo multiple scattering, effective phase functions
with identical first two moments and different higher-order moments converge toward each other,
i.e., the impact of the higher-order Legendre moments on the reflectance decreases. This is true
not only for the MHG and MPC phase functions but also for any phase function because the
exponential decay of the effective phase function’s Legendre moments as a function of the num-
ber of scattering events does not depend on the choice of the phase functions. Furthermore, we
know that the inverse problem, which aims to quantitatively compute intrinsic optical coefficients
from diffuse reflectance, does not properly account for the contribution of higher-order moments.
Therefore, we need to be able to verify that these moments have a minimal influence on the
diffuse reflectance. In practice, the contribution of these moments to the diffuse reflectance
shows (1) a decrease in the number of scattering events (s) and (2) a dependence on how for-
ward-peaked the scattering phase function is. Thus, to find a criterion that allows us to estimate
the contribution of these higher-order moments to the diffuse reflectance, we first must find a
parameter that takes into account these two characteristics while being easy to use in MC sim-
ulations. For this purpose, we propose to calculate for each photon detected after s scattering
events in a reflectance MC simulation, a weight Ws defined as the sum of the differences of the
higher-order moments between the two s-scattered MHG and MPC effective phase functions
with identical ðg1; g2Þ moments, corresponding to those used in the MC simulations. Due to
the identical first two moments,Ws can simply be calculated from the difference in area between
the two s-scattered effective phase functions according to the following equation:
EQ-TARGET;temp:intralink-;e009;114;496

Ws ¼
Z

j
X∞
n¼3

ðgsn;MHG − gsn;MPCÞð2nþ 1ÞPnðμÞjdμ

¼
Z

jðgs3;MHG − gs3;MPCÞ
7

2
ð5μ3 − 3μÞþ ðgs4;MHG − gs4;MPCÞþ : : : jdμ

¼
Z

jðPMHGðgs1; gs2; μÞ − PMPCðgs1; gs2; μÞjdμ. (9)

Ws is maximal for a single scattering event and decreases to 0 as the number of scattering events
increases because both phase functions tend toward isotropy. For a more forward peaked phase
function, represented by high g1 and g2 values,Ws will decrease more slowly as a function of the
number of scattering events than for a more isotropic phase function represented by low g1 and g2
values. The weighing functionWs can thus well capture the two characteristics mentioned above.

Certainly, scattering phase functions other than the MHG and MPC could have been used to
calculate Ws. However, such scattering phase functions, which can independently adjust g1 and
g2 within a certain range while being constrained by the fact that they must satisfy the positivity
constraint (p > 0), are not trivial to generate. After defining this parameter, the MC simulation
program was modified to calculate the distribution of s-scattered photons (ps) at the level of each
detection fiber. A typical distribution of s-scattered photons (ps) for an SDS of 0.4 mm and a tilt
angle of 40 deg for the IOPs of case #1 is shown in Fig. 6 (blue curve) with its correspondingWs

(orange curve). Then, the proposed criterion (F) to evaluate the contribution of these higher-order
moments to the diffuse reflectance is given by

EQ-TARGET;temp:intralink-;e010;114;233F ¼
XN
s¼1

psWs; (10)

which corresponds to the sum of the distribution of the s-scattered photons weighed by Ws,
where N is the maximum number of scattering events experienced by the detected photons.
The F value represents the relative contribution of the higher-order moments to the backscattered
signal at a detection fiber. A small F value indicates that the photons have scattered enough times
that the contribution of the higher-order moments to the reflectance is marginal. Conversely, an F
value close to 1 indicates that the contribution of the higher-order moments is very high. This
means that, by taking into account the forward-peaked aspect of the initial phase function, the
SDS is too small to allow the detected photons to have undergone enough scattering events to
make the effective phase function isotropic enough. In such a case, higher-order similarity rela-
tions must be verified to adequately model the scattering.
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To determine the value below which F must remain for the second-order approximation to
be valid, a wide variety of IOPs and optical setup geometries were tested. Figure 7(a) shows the F
value as a function of SDS for different IOP combinations and different tilt angles. Figure 7(b)
shows the F values as a function of the relative error (jRMHG − RMPCj∕RMHG) due to higher-order
moments when the reflectance is simulated with the MPC and MHG phase functions with iden-
tical (g1; g2) moments. The reference case is for the properties of case #1 with a tilt angle of 0 deg.
Although only eight examples are given here, many more were tested, and the results presented
here are representative of the general trends observed.

We see that the F value increases as μ 0
s decreases and as μa increases. This is because a lower

μ 0
s value corresponds to fewer scattering events of the detected photons, which increases the

contribution of the higher-order moments. On the other hand, higher μa values correspond to
shorter path lengths, so the collected photons will have scattered fewer times. The effect of
increasing the tilt angle also increases the F value, meaning that larger SDSs are required to
achieve a similar F value. The subdiffusive parameter γ is the only parameter that does not seem
to have a direct relation with F. Figure 7(b) shows that the relative error in the reflectance due to
the higher-order moments remains below 10% when the F value is below 10%. The criterion
proposed by Bevilacqua and Depeursinge7 for perpendicular fibers (ρμ 0

s > 0.5) was established
using this 10% threshold on the relative reflectance error. Thus, this same threshold is used for the
proposed F criterion. This implies that, for the second-order approximations to hold, the criterion
F > 10% must be satisfied. The purpose of the criterion is to define the minimum SDS for a
given optical geometry and tissue IOPs.

Fig. 6 Probability density function of the number of scattering events of the collected photons at an
SDS of 0.4 mm and a tilt angle of 40 deg and weight of the higher-order moments as a function of
the number of scattering events.

Fig. 7 (a) F value as a function of SDS and (b) relative error as a function of criterion value for a
wide range of IOP values and optical setup geometries. Baseline values are μ 0

s ¼ 0.2 mm−1,
γ ¼ 1.5, and μa ¼ 0.2 mm−1.
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4 Determining the Maximum SDS: Robustness Versus Sampled
Volume

Once the minimum SDS is identified for the probe geometry under consideration, the position of
the other detection fibers can be determined based on the desired robustness of the inverse prob-
lem and the sampled depth. The sampling depth is estimated by recording the distribution of
the scattering event positions along the z axis of the photons collected by the detection
fibers. Figure 8(a) shows the 3D surface containing 70% of the scattering events for the detection
fibers at SDS of 0.4 mm (in red) and 0.6 mm (in blue) for IOPs typical of biological tissue
(μ 0

s ¼ 2 mm−1, γ ¼ 1.5, and μa ¼ 0.2 mm−1), using the MHG phase function. We see that,
as the SDS increases, so does the sampling depth within the tissue. By summing over the
ðx; yÞ plane, the distribution of the scattering events as a function of depth is represented in
Fig. 8(b). To represent the sampled depth with a scalar value, the depth over which 80% of the
scattering events take place is used.28,29

The higher the number of measurements and the more varied the information, e.g., using
different SDS or tilt angles, the more robust the estimation of the IOPs. To demonstrate this,
synthetic data are generated by adding 10% white Gaussian noise to the simulated reflectance,
and the IOPs are estimated for different distributions of detection fibers. Specifically, the mini-
mum SDS is set to ρmin ¼ 0.4 mm, and detection fibers are added every 0.1 mm, progressively
increasing the maximum SDS (ρmax). For each case, the process of generating synthetic data and
solving the inverse problem is repeated 10 times to obtain a statistically significant result on the
estimation error. Figure 10 shows that as ρmax increases, the estimation error decreases. This is
because, as light travels farther into the tissue, absorption has a larger impact on the DRS signal.
The effect of this phenomenon on the inverse problem can be noticed by observing the cost
function (C) defined in Eq. (10). Figure 9 shows the cost function in the ðμ 0

s; μaÞ plane. We see
that, for a single detection fiber, there is a range of possible solutions that minimize the cost
function. As the SDS increases, the area representing the minimum of the cost function (shown
in dark blue) rotates in the ðμ 0

s; μaÞ plane, where the LUT in both axes is meant to cover realistic
coefficient values for biological tissues in the 500 to 750 nm range.13 As the total cost function is

Fig. 8 (a) Surfaces containing 70% of the scattering events of the collected photons for fibers at
SDS of 0.4 and 0.6 mm and (b) distribution of the scattering events along the z axis.

Fig. 9 Cost function value in the ðμ 0
s; μaÞ plane at SDS of (a) 0.1 mm, (b) 0.9 mm, as well as for

(c) the average of 10 fibers evenly spaced between 0.1 and 2 mm. The yellow contour line delimits
the region where the cost function value is smaller than 0.1.
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the average of all detection fibers, the shape of the cost function becomes more convex using both
fibers and better defined than when a single detection fiber is considered. Because the exper-
imental data contain noise, the solution identified by the inverse solver is susceptible to moving
around in the minimal region of the cost function, represented by the yellow contour lines. Using
the information from many fiber combinations, this minimal region becomes more convex and
smaller, which results in a better robustness of the inverse solver. More details about the influence
of probe geometry on the shape of the cost function are given in part 2 of this paper. Furthermore,
it is worth mentioning that the exact shape of the cost function for each fiber combination
depends on the values of the solution. For example, in the case of a higher absorption, the mini-
mum region of the cost function will narrow faster as a function of SDS because of the greater
impact of absorption on the reflectance values.

The position of the maximum SDS thus depends on both the desired robustness of the
inverse problem as well as on the acceptable compromise for the sampled depth. This is because
greater robustness requires the use of fibers with larger SDS, which increases the volume
sampled by light within the tissue. In these experiments, where 10% white Gaussian noise is
added to the synthetic data, a 10% estimation error in IOP determination is considered acceptable
for the choice of ρmax.

5 Influence of IOPs on Probe Design
One problem that must be emphasized when determining the minimum and maximum SDS for a
new DRS probe design to neglect the contribution of the higher-order moments and obtain a
robust calculation of the IOPs of the medium is that this determination depends on the IOPs
themselves. In the context of biomedical applications, the IOPs are generally not known prior
to the DRS acquisition. One solution to this problem is to consider a limit case, i.e., realistic IOP
values that would require the largest minimum SDS. As seen in Fig. 7(a), this represents a tissue
with a high μa and a low μ 0

s value. Based on a literature review of IOPs in biological tissues,13 a
reasonable limiting case is μ 0

s ¼ 1 mm−1, μa ¼ 0.2 mm−1, and γ ¼ 1.9, labeled case #2.
To determine the minimum sampled depth of the probe as a function of the fiber tilt angle for

case #2, the three steps are carried out, namely: (1) identify ρmin based on the criterion F > 0.1,
(2) identify ρmax that guarantees an estimation error linear with the level of added noise, and
(3) evaluate the sampled depth at ρmax. Figure 10 shows the results of these three steps using
tilt angles of 0 and 60 deg.

Fig. 10 Steps for evaluating the minimal sampling depth for a considered fiber geometry. The top
row considers the case of fibers perpendicular to the surface, and the bottom row fibers tilted at a
60-deg angle. (a) The computation of criterion F to identify the minimal SDS. (b) The robustness
analysis as a function of SDS to identify the maximal SDS using the minimal SDS identified pre-
viously. (c) The estimation of the sampling depth at the maximal SDS.
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We see that, for perpendicular fibers, ρmin ¼ 0.4 mm and ρmax ¼ 0.9 mm, which correspond
to a sampling depth of 0.8 mm. By increasing the fiber tilt angle, the minimum SDS is increased
to 1.1 mm because the photons undergo fewer collisions for the same SDS. The ρmax value is
0.6 mm farther away, which is a similar result to the one obtained for the case at 0 deg. Although
the SDSs are larger for the tilted-fiber geometry, the sampled depth is reduced to 0.3 mm, which
is an improvement of almost three times. This highlights the compromise that must be made
between minimizing the sampling depth and the sampling surface. If a tissue is known to be
homogeneous in the ðx; yÞ plane and inhomogeneous in the z axis, which is typical for the multi-
layered organization of epithelial tissue, then it is preferable to use tilted fibers to minimize the
sampling depth as much as possible. By minimizing the sampling depth through the use of tilted
fibers, it may be possible to limit the volume of the collected photons within the superficial layer
of the tissue. This is of particular interest because it was shown that a false assumption of homo-
geneous tissue when photons interact with two layers can drastically affect the validity of the IOP
estimation.16

6 Conclusions
In this work, a framework for the design of tilted-fiber geometry srDRS probes that can quanti-
tatively estimate the IOPs of living tissue is presented. The DRS literature rarely distinguishes
between a qualitative and a quantitative assessment of the IOPs. For the former, there are no
constraints on the optical setup’s geometry, and the previously described considerations in the
phase function modeling are of little importance because the goal is simply to observe relative
changes in the reflectance signal, which can be related to changes in tissue optical properties.
These relative changes can be observed over time, for example, in the case of bedside monitoring,
or among different tissue states for diagnostic applications. On the other hand, quantitative esti-
mation of the tissue IOPs has the advantage of providing reliable information about the bio-
chemistry and histoarchitecture of tissues, as well as allowing comparison across different
experimental setups. Quantitative estimation imposes additional constraints on the optical setup
geometry, and a careful analysis of the conditions to approximate the scattering phase function
with a limited number of Legendre moments is necessary.

In this work, a criterion based on the distribution of scattering events of the collected
photons and the convergence of the phase function toward isotropy is proposed. This criterion
guarantees the effect of the moments of order higher than 2 on the reflectance curve of less
than 10%. Although the criterion is presented here in the context of the second-order approxi-
mation of the phase function, it can be easily adapted for any approximation order. The cri-
terion is used to determine the minimum SDS as a function of probe geometry and tissue IOP.
In contrast, the shortest maximum SDS can then be selected by analyzing the effect on
both the accuracy of the quantitative calculation of IOP and the size of the sampled tissue
volume. Specifically, the maximum SDS is defined by the acceptable compromise between
IOP estimation robustness and sampling depth. The photons collected by the fiber at the larg-
est SDS are the ones that travel the deepest in the tissue, so this fiber defines the complete
probe’s sampling depth. To evaluate the sampling depth, a new metric was proposed (z80v ),
which represents the depth over which 80% of the collected photons’ scattering events
take place.

Numerical results emphasize that increasing the tilt angle from 0 to 60 deg tends to reduce
the sampling depth by a factor of ∼2.6. This comes at the expense of a larger lateral sample area
(i.e., parallel to the tissue surface) as the maximum SDS increases by a factor of ∼1.8. Therefore,
when designing new srDRS probes, several decisions should be made regarding the best shape of
the light-sampled volume. It is worth noting that the sampling depth could be further reduced by
incorporating higher similarity relations in the numerical model, such as δ and ϵ.21,22 These
approaches seem promising but have the major inconvenience of adding more unknowns to the
inverse problem, which complicates its resolution. This work provides a solid framework for
designing efficient srDRS optical setups to quantitatively estimate IOPs. As reported IOP tissue
values vary widely in the literature and knowing that the distinction between qualitative and
quantitative IOP estimations is often not clearly stated in DRS publications, we hope that this
work will help to obtain reliable quantitative estimation of tissue IOP.
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