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ABSTRACT. Significance: Hyperspectral dark-field microscopy (HSDFM) and data cube analy-
sis algorithms demonstrate successful detection and classification of various tissue
types, including carcinoma regions in human post-lumpectomy breast tissues
excised during breast-conserving surgeries.

Aim: We expand the application of HSDFM to the classification of tissue types and
tumor subtypes in pre-histopathology human breast lumpectomy samples.

Approach: Breast tissues excised during breast-conserving surgeries were imaged
by the HSDFM and analyzed. The performance of the HSDFM is evaluated by com-
paring the backscattering intensity spectra of polystyrene microbead solutions with
the Monte Carlo simulation of the experimental data. For classification algorithms,
two analysis approaches, a supervised technique based on the spectral angle
mapper (SAM) algorithm and an unsupervised technique based on the K -means
algorithm are applied to classify various tissue types including carcinoma subtypes.
In the supervised technique, the SAM algorithm with manually extracted endmem-
bers guided by H&E annotations is used as reference spectra, allowing for segmen-
tation maps with classified tissue types including carcinoma subtypes.

Results: The manually extracted endmembers of known tissue types and their
corresponding threshold spectral correlation angles for classification make a good
reference library that validates endmembers computed by the unsupervised
K -means algorithm. The unsupervised K -means algorithm, with no a priori informa-
tion, produces abundance maps with dominant endmembers of various tissue types,
including carcinoma subtypes of invasive ductal carcinoma and invasive mucinous
carcinoma. The two carcinomas’ unique endmembers produced by the two methods
agree with each other within <2% residual error margin.

Conclusions: Our report demonstrates a robust procedure for the validation of an
unsupervised algorithm with the essential set of parameters based on the ground
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truth, histopathological information. We have demonstrated that a trained library of
the histopathology-guided endmembers and associated threshold spectral correla-
tion angles computed against well-defined reference data cubes serve such param-
eters. Two classification algorithms, supervised and unsupervised algorithms, are
employed to identify regions with carcinoma subtypes of invasive ductal carcinoma
and invasive mucinous carcinoma present in the tissues. The two carcinomas’
unique endmembers used by the two methods agree to <2% residual error margin.
This library of high quality and collected under an environment with no ambient
background may be instrumental to develop or validate more advanced unsuper-
vised data cube analysis algorithms, such as effective neural networks for efficient
subtype classification.
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1 Introduction
Breast-conserving surgery (BCS) is for patients diagnosed with early-stage breast cancer or those
who have responded well to neoadjuvant chemotherapy prior to their surgery. While the success
rate is high, the risk of BCS is that there could be recurrence, requiring a second surgery with
more than 30% rate, for both ipsilateral and systemic cases.1 The standard of care requires com-
plete removal of cancerous regions by lumpectomy, leaving no positive margins detected at the
time of surgery. The common practice to confirm a successful surgery is a histopathology reading
of the hematoxylin and eosin (H&E)-stained slides of the post-lumpectomy sample to confirm a
negative or clear margin, where the ductal carcinoma in situ should not be found within a 2 mm
distance from all specimen edges2 or no invasive cancer should be found on any exposed margin
surface. With positive or close superficial surgical margins, mastectomy or re-excision should
follow within days or weeks, following surgery. The delay in re-excision is sometimes due to the
delay in histopathology results. Ideally, an accurate image-guide surgery or an immediate post-
lumpectomy evaluation of the margin could be done, to avoid delays to surgery, if positive
margins are discovered.

The current gold standard for margin determination is based on histopathological micro-
scopic imaging of the tissue sections stained with H&E. A variety of optical imaging techniques
have been demonstrated to enhance breast tumor margin detection in H&E slides of post-
lumpectomy samples.3 Although the techniques are capable of precise determination of tumor
margins, detectable tissue types are limited due to the staining targets nuclei, connective tissue,
and fat only. Also, the H&E reading requires the trained eyes of the histopathologists. Label-free
imaging methods could avoid the lengthy process involving the H&E staining and reading.

Optical imaging of post-lumpectomy, pre-histopathology samples has been demonstrated by a
variety of techniques for imaging a whole sample or partial regions at the suspicious tumor margin.
The whole sample imaging techniques include structured illumination imaging, including spatial
frequency domain imaging,4–7 near-infrared fluorescence contrast imaging,8–11 photoacoustic
tomography,12,13 and terahertz spectroscopic imaging.14 Those techniques provide quick assess-
ment of the tumor margin, but they suffer from low spatial resolution and/or insufficient specifi-
cation in some technologies.12 For enhanced spatial resolution, other techniques have been used for
imaging partial regions of interest targeting the area at the tumor margin. Such techniques include
diffuse reflectance spectroscopy,15–17 spatially resolved Raman spectroscopy,18 optical coherence
tomography,19,20 light-sheet microscopy,21 and nonlinear microscopies (two photon microscopy,
second harmonic microscopy, coherent anti-Stokes Raman scattering microscopy).22,23

Hyperspectral imaging (HSI) was initially developed in the field of remote sensing and has
been introduced to medical applications to augment conventional spectroscopic imaging tech-
nologies. HSI produces images to form a three-dimensional “data cube” consisting of stacked
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two-dimensional (2D) images of the same scene at multiple contiguous wave bands. More
recently, the technologies have increasingly been applied to enable histologic evaluation of
tumors in biopsy or post-lumpectomy tissues7,24–27 to enable intraoperative assessment of tissues.
A variety of applications of the HSI for tumor margin imaging have successfully been demon-
strated for image-guided clinical treatments involving diabetic wounds,28,29 oral cancer,30 head
and neck cancer,25,27,31 and breast cancer.32–34 Extensive discussions on the progress in medical
applications of various hyperspectral imaging techniques are available in reviews elsewhere.35–38

Most hyperspectral tumor margin imaging involving HSI technologies and analyses have
been demonstrated using reflectance intensity contrast, focusing on classification of the tumor
versus all the remaining, non-tumor tissue sites. When classifying multiple tissue types the end-
members, unique spectra of various tissue types, are extracted (supervised) or computed (unsu-
pervised) from a small region of interest in the sample. Then, segmentation maps are established
within the same sample from which the endmembers originate. In more sophisticated analysis,
multiple thin slices of the same tissue are used for validation by the known number of classes.39

However, due to sample-to-sample variations, it is challenging in HSI to build a reliable library of
the endmembers of various tumor types that can be used to universally classify tumor regions
across other samples. The sample-dependent spectral variation is severe in reflectance mode
hyperspectral imaging due to non-negligible sub-pixel mixing with absorption spectra by other
non-targeting biological substances (e.g., oxy-hemoglobin). This contribution due to absorption
is not uniform across various samples. To mitigate the undesired absorption and multiple scatter-
ing spectral contributions, dark-field hyperspectral microscopy been demonstrated for scattering-
based imaging of single cells and their subcellular structures,40,41 adipose tissues,40 fibrocystic
disease, and ductal carcinoma in breast lumpectomy sample42 that has reported discernible
contrast in scattering power between the benign versus malignant tissues.

The primary objective in analyzing a data cube is to ascertain the presence or absence of a
specific target tissue type with a known spectral signature within the data cube. Various clas-
sification algorithms, both supervised and unsupervised, have been showcased for this purpose.
Extensive discussions on the details and pros and cons of various algorithms are reviewed
elsewhere.43–46 The algorithms are divided into two categories: supervised and unsupervised.
The supervised approach or signature-based target detection relies on a priori spectral informa-
tion of specific tissue types as reference endmembers, so-called “expert labels,” and employs
classification algorithms to identify a tumor region with a spectrum similar to its reference
or expert label. Such algorithms include support vector machine with feature-selection technique
for tumor detection39,47,48 supervised spectral-spatial Fisher’s linear discrimination analysis,49

spectral slope classification method,50 artificial neural networks,51 and spectral angle mapper
(SAM).52 On the other hand, the unsupervised approach is based on a purely statistical compu-
tation with no a priori spectral information of the target tissue types, and such algorithms include
principal component analysis,53 non-negative matrix factorization,54 hierarchical-distributed sto-
chastic neighbor embedding algorithm,55 and K-means clustering.56 Among other unsupervised
approaches, the K-means clustering is one of the most intuitive algorithms, providing clusters of
pixels based on their spectral similarity under an assumption that the spectral signatures of pixels
belonging to the same cluster are assumed to approximately lie in a low-dimensional subspace.44

Furthermore, based on endmembers returned by the K-means, solving non-negative least squares
problems quantifies each pixel’s spectral similarity to the computed endmember of each cluster
to which the pixel belongs, allowing for spectral unmixing when multiple endmembers are asso-
ciated with that pixel.

This work expands the application of hyperspectral dark-field microscopy (HSDFM) to the
classification of tissue types and tumor subtypes in pre-histopathology human breast lumpec-
tomy samples. Two analysis approaches, a supervised technique based on the SAM algorithm
and an unsupervised technique based on the K-means algorithm, are applied to classify various
tissue types including carcinoma sub types. In the supervised technique, the SAM algorithm with
manually extracted endmembers guided by H&E annotations is used as reference spectra,
allowing for segmentation maps with classified tissue types including carcinoma subtypes.
The manually extracted endmembers of known tissue types and their corresponding threshold
spectral correlation angles (SCA) for classification make a good reference library that validates
endmembers computed by the unsupervised K-means algorithm. The unsupervised K-means
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algorithm with no a priori information produces abundance maps with dominant endmembers
of various tissue types, including carcinoma subtypes of invasive ductal carcinoma (IDC) and
invasive mucinous carcinoma (IMC).

2 Methods

2.1 Hyperspectral Dark-Field Microscopy
The details of our HSDFM setup are described elsewhere41 and its schematic is shown in
Fig. 1(a). The HSDM is an optical microscope (Olympus BX60) with a broadband white halogen
lamp (100W HAL-L 7724 bulb, Phillips). The lamp is collimated through a condenser lens and
illuminates the sample through a ring mask to form a conically soft focused beam through a
5× objective lens with numerical aperture of 0.13 (UIS 2 LMPlanFL N, 5X, NA = 0.13,
Olympus).

The essence of the HSDFM is an incident illumination angle larger than the maximum
collection angle of the objective lens, which is sin−1ðNA∕nÞ, where NA is the numerical aperture
of the imaging objective lens and n is refractive index of the medium in the beam path. This
configuration allows for an effective rejection of specular reflectance by the imaging objective
lens. The image contrast comes primarily from the back-scattered light in the upper layers of the
sample. Reflected light collected by the objective passes through an opto-acoustic tunable filter
(AOTF, HSI 300, Gooch & Housego) and is focused to an electron-multiplying charge-coupled
device (EMCCD) camera (iXon 897, Andor). A calibration procedure to account for the illumi-
nation spectrum of the lamp, the spectral transmission of the AOTF and optical path, and the
spectral response of the EMCCD is described elsewhere.57 HSDFM data cubes are a set of snap-
shot images acquired at each wavelength from 480 to 650 nm at every 5 nm wavelength step with
8 nm bandwidth. To acquire multispectral images without camera saturation, the exposure time
of the EMCCDwas controlled by codes to maximize the dynamic range (about 95% fill factor) of
the camera at a fixed gain during the acquisition of the entire data cube. The intensity histogram
at every wavelength was examined at various exposure times before data storage to select the
optimum exposure time which results in the maximum dynamic range. This procedure avoids
gain-dependent nonlinear responsivity of the camera sensor. The range of the exposure time to
scan was pre-determined by the lamp’s spectral intensity and the camera’s spectral responsivity
to avoid a lengthy exposure adjustment process, to allow for acquisitions in a few seconds at each
wavelength up to 650 nm. We found the exposure adjustment time above 650 nm and NIR range
takes longer than a minute as the silicon EMCCD camera’s quantum yield is relatively low in
this range.

The performance of the HSDFM was evaluated by analyzing back scattering intensity spec-
tra from liquid phantoms of water dispersed with polystyrene spheres of 368 nm diameter

Fig. 1 Schematic of the hyperspectral dark field microscope and its performance validation.
(a) Schematic of HSDFM setup. (b) Configuration for the Monte Carlo simulation, (c) reduced scat-
tering coefficient spectra of three polystyrene solutions at different volume fractions. The dotted
lines are simulated look-up table results by the Monte Carlo simulation at various volume fractions
of the model microbead solutions. The colored data points are reduced scattering coefficient
spectra of the three different bead solutions, calculated by the Monte Carlo simulation using the
Mie phase function defined by the size and concentration of each bead solution.
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(Polybead Cat # 07306). Three samples at nominal volume fractions (volume of spheres/volume
of water) of 0.003, 0.002, and 0.001 (polystyrene/water) were prepared by dilution and were
imaged. For spectral measurements of the microsphere samples, the scattering intensity was aver-
aged over a 100 pixel by 100 pixel region of interest at the center of the field of view (FOV) at
each wavelength. The reflectance spectra of the three liquid phantoms were compared with a
series of spectra (back reflected intensity versus wavelength) generated by a Monte Carlo sim-
ulation at various volume fractions of the PS beads in water. Monte Carlo simulations of photon
transport for the HSDFM were done by a customized computed unified device architecture
Monte Carlo maximum likelihood code58 running on a graphical processor unit (Nvidia
Tesla M2050 and GeForce GTX960). In the simulation implementing the dark field microscope
configuration, photons from a planar source were injected at a 15 deg incident angle onto the
sample surface of 5 mm diameter, and the back scattered photons were collected with the exit
angles smaller than sin−1ðNA∕nÞ, where NA is the numerical aperture of the objective lens, from
a 1.6 mm diameter FOVarea. A schematic of the simulation geometry is shown in Fig. 1(b). Each
simulation was performed with 100 million incident photons and with the upper limit of one
million collected photons. From the simulation, the reflectance value, the ratio of the number
of collected photons versus the injected photons, was recorded. From the nominal microsphere
concentration, the volume fractions for a series diluted samples were calculated. A look-up table
(LUT) of simulated reflectance curves was established with volume fractions ranging from
0.0005 to 0.005 in steps of 0.0005 and the absorption coefficients set to zero according to the
following procedure. The z-average size (diameter) of polystyrene spheres in a 0.3% solution by
volume was measured by a dynamic light scattering system (Zetasizer Nano, Malvern)59,60 and
was found to be 368.0� 3.7 nm (one standard deviation by five measurements) with monomodal
size distribution (polydispersity <0.1). The Mie scattering phase function for simulation was
calculated for 368 nm diameter polystyrene spheres at different wavelengths (from 400 to
800 nm in 25 nm steps) as well as with different volume fractions. The absorption coefficients
were set to zero and the wavelength-dependent anisotropy, gðλÞ, and reduced scattering coef-
ficient, μ 0

sðλÞ ¼ μsðλÞð1 − gðλÞÞ, were calculated using an algorithm published elsewhere61,62 and
were used for simulations to establish an LUTof reflectance versus wavelength curves for differ-
ent volume fractions. An LUTof μ 0

sðλÞ at various volume fractions were also established from the
calculation for the inverse solution of the μ 0

sðλÞ of the liquid phantoms as shown in Fig. 1(c).
The three μ 0

sðλÞ of different volume fraction samples obtained from the HSDFM agree well with
the LUT μ 0

sðλÞ and verifies that the intensity of the μ 0
sðλÞ at each wavelength is proportional to the

volume fraction (i.e., relative concentration) of the PS beads.
An acquired HSDM image is a reflectance intensity data cube, Iðm; n; λÞ. The estimated

spatial resolution of 10.2� 2.1 μm of the HSDM in a broadband was determined by analyzing
a data cube of a USAF 1951 resolution target (DA007, Edmund Optics), as discussed in detail in
Fig. S3 in the Supplemental Material. For each sample, a data cube of a reflectance standard
(Spectralon Labsphere) was acquired under the same conditions, and its averaged spectrum,
IrefðλÞ, across the FOV was used for normalizing the multispectral data cube. An initial data
processing involving normalization and correction with the dark background spectrum,

IdarkðλÞ, builds a data cube ~Xðm; nÞ to analyze:

EQ-TARGET;temp:intralink-;e001;117;229

~Xðm; nÞ ¼ Xðm; n; λÞ ¼ Iðm; n; λÞ∕Δτ1ðλÞ − IdarkðλÞ∕Δτ2ðλÞ
IrefðλÞ∕Δτ3ðλÞ − IdarkðλÞ∕Δτ4ðλÞ

; (1)

where each intensity map was normalized by its exposure time, ΔτnðλÞ at every wavelength for

cube n (note thatΔτnðλÞ for the data cubes in Eq. (1) are not the same), and the data cube ~Xðm; nÞ
was processed further for spatial flattening to correct any long-range non-uniform illumination
across the FOV due to sample tilt and spatial nonuniformity at certain wavelengths. The Gaussian
smoothing algorithm with the directional intensity standard deviation across the image was used
for this correction in an image analysis package. For tissue image collection, a resected tissue
sample was placed onto a sterile tissue-mounting cartridge and covered with a glass slide to
mitigate potential surface roughness-dependent artifacts. To retain moisture in the tissue sample,
the total time to handle the sample and to acquire the data cubes for all FOVs was limited to a few

Hwang et al.: Hyperspectral dark-field microscopy of human breast lumpectomy. . .

Journal of Biomedical Optics 093503-5 September 2024 • Vol. 29(9)

https://doi.org/10.1117/1.JBO.29.9.093503.s01


minutes for each sample. During the data collection, the whole microscope was contained within
a light-shield curtain to reject any ambient light.

2.2 Analysis Algorithm Codes

In hyperspectral data analysis, the spectrum of a pixel ðm; nÞ in the hyperspectral data cube is
treated as a linear superposition of multiple spectra of “pure” individual substances called “end-
members.” In HSDFM, the endmembers are the back scattering intensity spectra from cellular
and molecular substances within each pixel. For the supervised approach, the endmembers in this
study were extracted from selected regions of known tissue types,63 where the tissue type infor-
mation was provided by the histopathology annotation for specific regions. Computation of the
SCA and the segmentation map associated with each extracted endmembers were done by the
SAM code by a commercial software package, ENVI (version 6.0, Harris Geospatial Solutions).
Details of the endmember extraction and SCA computation procedures are described in the
results and discussion section. Details of the K-means algorithm are described in Sec. 3 as well.
Both supervised and unsupervised analyses were performed in the Microsoft Windows 10 oper-
ating system (Microsoft Corp., Redmond, Washington).

2.3 Tissue Sample Preparation and Histopathology Imaging

Freshly resected human breast tissue was imaged at the Dartmouth-Hitchcock Medical Center
under an IRB-approved protocol. The fresh tissue sample was placed on a sterile petri dish and
covered by a glass slide to mitigate artifactual signal due to the surface roughness of the tissue.
Each sample was photographed using a digital camera installed with a light illumination station,
followed by HSDFM imaging. After imaging, the sample was contained in saline solution at 4°C
until H&E slide preparation for digital imaging and for digitally marking with annotations on the
image. H&E slides were prepared by a procedure described in detail elsewhere.4 In brief, tissues
were fixed in 10% buffered formalin (Biochemical Science Inc., Swedesboro, New Jersey) and
dehydrated through graded alcohols, followed by paraffin embedding. Then, the embedded tissue
was sectioned into slices of 4 μm thickness and mounted onto a glass slide with adhesive (Sta-on;
Surgipath Medical Industries, Richmond, Illinois). The mounted slide was stained with H&E
followed by air-drying for at least 30 min and loading onto a Leica Bond Max automated immu-
nostainer (Leica Biosystems, Deer Park, Illinois). Then the mounted sample was baked (30 min
at 60°C) and dewaxed for 30 min at 72°C, while being rinsed with alcohol, then washed in bond
wash buffer (DMI Medical Inc., Davie, Florida).

3 Results and Discussion

3.1 Extraction of Endmembers of Several Types from the Data Cubes Acquired
by the Hyperspectral Dark-Field Microscope

The HSDFM images of human breast lumpectomy samples were excised from multiple patients
during BCS. Each panel in Fig. 2 compares a digital photograph (bottom) and its companion
H&E slide micrograph (top) for each sample. The H&E slide preparation and its imaging were
done after acquiring a digital photograph immediately followed by the HSDFM acquisition to
ensure the spectral characteristics of the fresh wet tissue are included in the data cube. The FOV
of an HSDFM data cube is limited to a 1.2 mm × 1.2 mm, about 100 times smaller than the total
area of the tissue, therefore the data acquisition locations of the FOVs were determined by the
local color variation to include as many tissue types as possible within the normal samples in
Figs. 2(a)–2(d) or to include the suspected tumor boundary with the tumor-include samples in
Figs. 2(d)–2(g). Two or four data cubes were collected from contiguous FOVs to analyze con-
tiguous features across the selected FOVs, and their locations are marked with yellow squares
both on the digital photographs and on the H&E slide images. The continuity test of those
contiguous features in the analyzed classification maps is one of the test methods to check the
validity of the extracted endmembers which is discussed later in depth. The H&E slide prepa-
ration involves a series of procedures including chemical fixation, paraffin embedment, and slic-
ing, causing target features’microscopic distortions and displacement from the initial locations in
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the pre-treated sample. Therefore, the locations of the corresponding FOVs on the companion
H&E image were determined by visually matching the corresponding features between the
pseudo-color images (PCIs) in Fig. 3 and their companion H&E slide images in Fig. 2. For
example, the patterns of interconnected tissue (ICT, pink) and adipose or fat tissue (white)
in the H&E slide were identified to place the data cube’s FOV locations on the H&E slides
by matching the patterns of gray (for ICT) and yellow color (for fat) in the corresponding
PCI in Fig. 3(a). To construct the PCI, three images at 480, 530, and 630 nm bands were selected
from each data cube for the blue, green, and red channels, respectively. Then each channel’s
intensity value was assigned to each element in the vector (b, g, r) to build a pseudo color for
each pixel.

The H&E staining identifies regions of carcinoma subtypes as well as specific tissue types in
the lumpectomy tissues. The tissue samples shown in Figs. 2 and 3 are (a) normal with benign
epithelium, (b) normal with benign epithelium and ruptured cysts, (c) normal with benign epi-
thelium with atrophic lobules, (d) abnormal with invasive lobular carcinoma (ILC), (e) abnormal
with malignant phyllodes, (f) abnormal with IMC, (g) abnormal with IDC. The carcinoma
regions are encircled by red lines on the H&E slide images. The yellow boxes are FOVs from
which data cube data were acquired. The H&E micrographs provide rich anatomical details with
common breast tissue features identified both in normal and tumor-containing samples. Such
features include spatial distributions of ICT, fat, and epithelium identified as pink and white,
respectively, and their regions enclosed by blue lines, respectively, by a histopathologist.
Furthermore, the H&E micrographs also revealed other prognosis features, such as ruptured cysts

Epithelium, benign, normal
Fat – white areas
Inter-connec�ve �ssue (ICT)
Ruptured cysts par�ally lined by 
benign epithelium in (b)
Atrophic lobule in (c)
Healing biopsy site in (f)
Carcinoma regions with: (d) invasive 
lobular carcinoma (ILC); (e) malignant 
phyllodes; (f) invasive mucinous 
carcinoma (IMC); and (g) invasive 
ductal carcinoma (IDC)

1 mm

1
2

1
2

(d)

1 mm

1

2

1
2

1 mm

1
2

(e)

1
2
3
4

(a)

1 mm

1
2
3
4

1 mm

1 2

(c)

1
2

2
1

(g)(f)

1 mm

1 2

1 mm

21

(b)

Fig. 2 Lumpectomy samples of various tissue types. Each panel in Fig. 2 compares a digital pho-
tograph (bottom) and its companion H&E slide micrograph (top) for each sample to identify as:
(a) normal with benign epithelium; (b) normal with benign epithelium and ruptured cysts; (c) normal
with benign epithelium with atrophic lobules; (d) abnormal with invasive lobular carcinoma;
(e) abnormal with malignant phyllodes; (f) abnormal invasive mucinous carcinoma; (g) abnormal
with invasive ductal carcinoma. The carcinoma regions are annotated by red enclosure lines on the
H&E slide images. Inside the yellow boxes are FOVs from which data cube data were acquired. On
the H&E slides, the green enclosed regions in (b) and (c) are ruptured cysts and atrophic lobules,
respectively, and the orange enclosed region in (f) a healing biopsy site.
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partially lined by benign epithelium (green in (b)), highly atrophic lobule (green in (c)), and a
healing post-biopsy site (orange in (f)).

The H&E staining identifies the spatial distribution of each tumor subtype. Lobular carci-
noma in situ is a precancerous condition characterized by the presence of abnormal cells within
the milk glands, posing a risk of progressing into malignant cancer outside of the gland.64 When
the cancer cells break out of the lobule, they invade into neighboring tissue, resulting in spreading
tumor cells associating with ICT as shown in (d) with an ILC region with the size of a few
centimeters. The PCIs in Fig. 3(d) display interspersed dark spots indicative of tumor cells widely
spread across the ICT. Malignant phyllodes tumor in (e) is a fibroepithelial neoplasm developed
in the ICT, not from ducts or glands from which most breast tumors originate. The corresponding
H&E slide shows cellular spindle-cell neoplasm with benign residual epithelial components.65

The PCIs in Fig. 3(e) identify dark tumor cells associated with the broad ICT region. IMC in
Fig. 3(f) is another relatively rare carcinoma subtype and is characterized by a large amount of
extracellular mucin which usually is shown as a dark hazy pattern on the tissue under a white
light illumination, indicative of hypocellular mucinous carcinoma.66 Lastly, IDC in Fig. 3(g) is
the most common, about 75% to 80% of all breast cancers.67 This carcinoma arises from the milk
duct then radiates into the surrounding breast tissue rich in ICT and fat, usually forming an infil-
trating solid mass. PCIs in Fig. 3(g) show a pinkish region colocalized with spindle cell nuclei
associated with gray ICT regions, characterized by a radiating fibrous pattern running diagonally
from the right middle.

Figure 3 shows a collection of contiguous PCIs from the data cubes of the FOVs marked in
Fig. 2. The annotated tissue patterns within the corresponding FOVs on the companion H&E
slide allow for visual classification of tissue types in the PCIs. For example, the patterns with
gray and yellow regions in the PCIs in a normal tissue shown in Fig. 3(a) match to ICT and
fat regions in the companion H&E slide image in Fig. 2(a), respectively. The red tubular and
elongated features (white arrowhead) are blood vessels which are not identified in the corre-
sponding H&E slides. On the PCIs, the regions from which spectral endmembers shown in

ILC

ICTlb IMC

Epi1 ICT3

IDC

Epi2

fat2

ICT2
blood2

blood1

ICTb

ICTf

fat1

ICT1

(a)

Phyllodes

(b)

(d) (f)

(c)

(g)(e)

200 m

Fig. 3 Pseudo color images of the HSDFM data cubes. A collection of contiguous pseudo color
images processed from HSDFM data cubes of the FOVs marked on the images shown in Fig. 2.
Regions from which the endmembers for various tissue types are marked on the images. The
same color for each tissue type is used for the label in this figure, endmember plots, and seg-
mentation maps throughout this paper. The circled numbers indicate the FOV numbers marked
in Fig. 2.
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Fig. 5 for different tissue types and blood vessels are marked with various colors for their boun-
daries: only one region is selected for blood and fat, but several regions for the ICTare selected as
the ICT distribution is relatively broader. ICTb, ICTf, and ICTare from regions close to the blood
vessel, near the fat tissue, and far from both, respectively. To extract additional endmembers from
other tissue samples, PCIs and their companion H&E slide images were compared to label a
tissue type to each extracted endmember: blood, fat, and ICTendmembers from the normal tissue
in Fig. 2(b) are labeled with blood2, fat2, and ICT2, respectively. Likewise, the comparison
between colored features in the PCIs and their companion H&E slide images allowed for locating
regions with carcinoma subtypes from which endmembers for the subtypes were extracted and
labeled. The same color for each tissue type is used for the ROI boundary in Fig. 3, endmember
plots in Fig. 4, and supervised segmentation maps in Figs. 7–9. Note that the colors assigned for
tumor subtypes in those figures are different.

Figure 4 shows a collection of endmembers and associated standard deviations of various
tissue types extracted from the regions marked on the PCIs in Fig. 3. Each endmember, ~μi in this
plot is a mean of multiple spectra from pixels within each marked region whose number of pixels
is shown in the parenthesis of each tissue types in the figure legends. Two endmembers for blood
and fat tissues from different normal tissue samples shown in Figs. 2(a) and 2(b), elucidating
that the two spectra from different samples is similar to each other. The fat spectra are nearly
flat above 550 nm but with scattering intensity decreasing as the wavelength decreases below
550 nm. The blood spectra share the same feature with local minima at about 540 and 575 nm
which correspond to two absorption peaks of oxygenated Hb of blood. This result implies that
the HSDFM acquisition on fresh tissues is still susceptible to light absorption, implying the
collected backscattering signal in the blood region may include multi-scattering signal which
involves long scattering pathlength. Two blood spectra shown are slightly different both in the
local minima and in the slope above 600 nm, indicative of tissue-to-tissue variations in scattering
signal and partial oxygen pressure convoluted together. The spatial distribution of the ICT
appears so broad that we extracted ICT endmembers from various regions of one sample
[Fig. 3(a)] and from another normal sample, Fig. 3(b), as well as from a tumor-including sample,
Fig. 3(d). For example, ICTf and ICTb are from regions in the proximity of fat and blood, respec-
tively, in the benign fibroid sample in Fig. 3(a) and ICT1 from a region far away from both.
Figure 4(b) shows a collection of those ICT endmembers extracted from those ROIs. They all
share the similar pattern with relatively small intensity fluctuations with an overall negative slope
versus wavelength, implying that ICTs are characterized with relatively uniform scattering inten-
sities across wavelengths, quite distinct from those of fat and blood. The 3% to 4% fluctuation in
the ICT spectra are not prominent in other samples, indicative of backscattering intensity modu-
lation unique in the ICT regions. In the same plot with ICT spectra, two epithelium spectra
(cyan), “epi1” from a normal tissue and “epi2” from IDC tissue are shown for comparison,
indicative of similar spectra to those of ICTs but with less local fluctuations. Further measure-
ments with connective tissue samples would need to clarify the exact source of this fluctuation
and to quantify the signal. Figure 4(c) compares four spectra extracted from regions identified
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Fig. 4 A collection of endmembers of various tissue types. A collection of endmembers of various
tissue types extracted from the regions marked on the pseudo color images of different tissue
samples shown in Fig. 3: (a) fat and blood endmembers; (b) ICTs, and epithelia; and (c) carcinoma
subtypes. The standard deviation of each spectrum is defined by the vertical height of the shaded
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which each endmember was extracted.
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with different carcinoma subtypes, ILC, phyllodes, IMC, and IDC. The spectra of IDC (purple)
and phyllodes (pink) appear to be similar with decreased intensities in 510 to 610 nm, but the
IDC spectrum shows less curvature in that wavelength region. On the other hand, ILC and IMC
spectra have a concave down shape with local maxima at different wavelengths. These distinct
spectral features of various carcinomas allow for segmentation maps of different subtypes.
Details on building segmentation carcinoma maps using these spectra are discussed in the next
section.

3.2 Supervised Algorithm to Build Segmentation Maps Delineating Different
Tissue Types and Carcinoma Subtypes, Based on Endmembers’
Orthogonalized Spectral Correlation Angles

Our analysis goal is to obtain spatial segmentation maps of various tissue types from a 3D inten-

sity data cube Iðm; n; λÞ or a data cube ~Xðm; nÞ and to ultimately classify tumor regions and their
boundaries. Discriminating pixels with a specific tissue’s endmember is challenging in a data
cube of biological tissues due to complex sub-pixel mixing of multiple endmembers. Our super-
vised approach here focuses on the classification of a specific tissue type by determining which
extracted endmember is of the closest match to the spectrum at each pixel.

To this end, our supervised approach is based on the SAM algorithm which has been intro-

duced to compute the degree of similarity between ~Xðm; nÞ, a spectrum at pixel ðm; nÞ, and ~μi,
the endmember of a specific element (tissue) type i.68 For tissue type classification, the SAM
treats the spectra as vectors in a hyperspectral space with dimensionality equal to the number of
wavelength bands.35 As illustrated for the SAM algorithm in Fig. 5(b), the spectral vectors can be
placed along the lines that pass through the origin of the multi-dimensional hyperspace. For a

tissue type i, the SAM calculates αiðm; nÞ, or the SCA (in radian) between ~Xðm; nÞ and ~μi:

EQ-TARGET;temp:intralink-;e002;114;441αiðm; nÞ ¼ cos−1
� ~Xðm; nÞ · ~μi
k~Xðm; nÞk × k~μik

�
: (2)

Note that calculation of SCA involves normalization with the vectors’ amplitudes, making it

insensitive to the uniform rescaling across the wavelength. Therefore, ~Xðm; nÞ and ~μi can be
rescaled by a constant multiplication factor without changing the result. The SCA, between

0 and π∕2, quantifies the similarity between ~Xðm; nÞ and ~μi: the smaller the SMA value, the
closer the match.69

With a given threshold SCA (TSCA), αthi , we define a segmentation map for a tissue type i as

EQ-TARGET;temp:intralink-;e003;114;321Isegi ðm; n; α1;iÞ ¼
�
0; αiðm; nÞ ≥ αthi
1; αiðm; nÞ < αthi

: (3)

Ideally, the αthi is determined by the relation: kIsegi ðm; nÞ − Igti ðm; nÞk ¼ null, where
Igti ðm; nÞ is a corresponding ground-truth image in which the spatial information of the tissue
type is completely known. One would think that Igti ðm; nÞ can be obtained from the counterpart
H&E slide’s image, but it is not readily usable for this computation because pixel-to-pixel match-
ing between an H&E image and its companion data cube is not possible: preparation procedure of
H&E slides, involving chemical fixation and slicing, result in microscopic morphological
changes. Alternatively, we define αorti , the orthogonalized SCA (OSCA) with which we build
segmentation maps instead with αthi . The procedure to determine the OSCA is summarized
in a flowchart in Fig. 5(a), and the details are explained below.

In essence, αorti for an endmember (~μi) is determined against its reference data cube to make

~μi orthogonal to it. The reference data cube is ~Rlðm; nÞ, where l ¼ 1; 2 so that two 2D reference

spectral vectors, ~R1ðm; nÞ and ~R2ðm; nÞ are data cubes of fat only and of fibroadenoma only,

respectively, where this information is confirmed by H&E reading. ~R1ðm; nÞ was used to deter-

mine αorti for endmembers of non-fat tissues (~μi; i ≠ fat) and ~R2ðm; nÞ for fat tissue endmembers,
(~μi; i ¼ fat). The PCIs of these two reference data cubes are displayed in Fig. 5(b) and their mean
spectra across the FOV in Fig. 5(c) along with ~μblood1 and ~μfat1 for comparison.
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The αorti is determined from a fill factor map which is calculated by the SMA algorithm
against the reference data cube so that

EQ-TARGET;temp:intralink-;e004;117;377Fiðm; nÞ ¼
�
1; βiðm; nÞ ≥ αorti
0; βiðm; nÞ < αorti

; (4)

where

EQ-TARGET;temp:intralink-;e005;117;327βiðm; nÞ ¼ cos−1
�

~μi · ~Rlðm; nÞ
k~μik × k~Rlðm; nÞk

�
; (5)

and l ¼ 1 for k ≠ fat, and l ¼ 2 for k ¼ fat. From this fill factor map, the fill factor, the ratio,
number of non-zero pixels against the total pixel numbers is defined by the following histogram:

EQ-TARGET;temp:intralink-;e006;117;262fiðβiÞ ¼
1

N

X
m;n

Fiðm; nÞ; (6)

where N is the total number of pixels in a data cube, and βi in Eq. (6) is a scalar variable defined
in Eq. (4).

The fill factor plot for various tissue types in Fig. 6(a) exhibits a sigmoidal pattern with a

trend that the fill factor increases in βi as more pixels with less similarity between ~μi and ~Rðm; nÞ
are counted in for each βi and eventually converges to 1 for a full coverage fill factor map. To
obtain the fill factor plots, discrete βi values, 0.05 · nðn ¼ 0; 1; 80Þ, were used. The smaller βi is,

the higher similarity is required for the pixel to be counted in for the fill factor contribution. As ~Rl

must be orthogonal to ~μi (i.e., the reference data cube contains no endmember tissue type), αorti

can be defined with the constraint that satisfies Eq. (4) for all ðm; nÞ. As an example, Fig. 7(b)
shows a plot of fblood1ðβiÞ along with Fblood1ðm; nÞmap at several βi values, allowing for finding
αortblood1 ¼ 0.16, which is the least βi to satisfy fblood1ðβblood1Þ ≠ 0 [corresponding image at
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Fig. 5 Procedure to determine the orthogonalized spectral correlation angle, OSCA. (a) The flow-
chart of the procedure. (b) Two reference data cubes used to determine the OSCA for the end-
member of each tissue type. (c) Themean spectra of the reference data cubes and endmembers of
“blood1” and “fat1” are displayed.
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αortblood1 ¼ 0.16 not shown in Fig. 7(b)]. For all other tissue types, their fill factor plots and αorti

values are determined likewise and are shown in Fig. 6(a).
Equation (3) with αthi replaced by αorti allows for building a segmentation map of a specific

tissue type i. As an example, a segmentation map in Fig. 6(c), Isegblood1ðm; n; 0.16Þ (i.e.,
αthblood1 ¼ αortblood1 ¼ 0.16) superimposed on the corresponding PCI confirms that the algorithm-
classified blood map matches to the blood regions in the corresponding PCI with visually iden-
tified red color. For a better visibility, the calculated blood segmentation map is overlaid by
translating it 50 pixels both in the x- and y-directions. Figure 6(d) shows the calculated coverage
ratio versus αblood1, several segmentation maps at various αblood1 are shown as well. Note that the
specificity of blood segmentation map becomes worse as βi increases far beyond the αorti and
eventually becomes completely uncorrelated.

Our goal is to establish a library of (~μi; αorti ) [i.e., (endmember, OSCA) pairs] of multiple
tissue types to build an integrated segmentation map showing multiple regions, each of a specific
tissue type i. So far, we demonstrated a supervised algorithm to build a segmentation map of only
one type, blood, but the technique has been expanded to multiple tissue types. The final inte-
grated segmentation map is a simple superposition of multiple segmentation maps of various
tissue types under a constraint that the pixel of interest is classified into a specific tissue type
group which gives rise to the least SCA among other SCAvalues computed for all tissue types so
that multicolor segmentation map is

EQ-TARGET;temp:intralink-;e007;114;96

X
i

fIsegi ðm; n; α1;iÞ ⊗ CijMinðα1;iðm; nÞÞg; (7)

= 0.16

= 0.05 = 0.275

= 0.5

= 0.05 = 0.275

= 0.4
(b)

(d)

= 0.26
(a)

(c)

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

Fi
ll 

fa
ct

or

 Blood1 (0.160)
 Fat1 (0.070)
 ICTf (0.030)
 ICTb (0.035)
 ICT1 (0.045)
 Fat2 (0.055)
 Epi1 (0.050)
 ICT3 (0.050)
 Epi2 (0.060)
 IDC (0.085)
 ILC (0.045)
 ICTlb (0.045)
 ICTmc (0.060)
 Phyllodes (0.070)

b

a

a

a a

a

a

a

a

a

bi
0.2 0.3 0.4

0.0

0.2

0.4

0.6

0.8

1.0

Fi
ll 

fa
ct

or

blood1

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e

blood1

200 m200200 mm

Fig. 6 The fill factor versus SCA and blood segmentation maps. (a) The fill factor versus spectral
correlation angle of various tissue types. (b) A plot of f blood1ðβblood1Þ) along with F blood1 ðm; nÞ map
at several βblood1 values. (c) A segmentation map of “blood1” is overlaid onto the corresponding
PCI in Fig. 3(a) FOV3. The calculated blood segmentation map is diagonally translated
50 × 50 pixels for a better visibility. (d) Calculated coverage versus αblood1 and several segmen-
tation maps at various αblood1.
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where ⊗ is a color-assigning operator to assign each pixel with a specific color, Ci associated
with ~μi which results in the minimum SCA.

Figure 7(a) shows an integrated segmentation map of the normal tissue sample shown in
Fig. 2(a). The map was obtained by stitching four segmentation maps individually computed for
the four contiguous data cubes with the same set of endmembers locally extracted from one FOV
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Fig. 7 Integrated segmentation maps and spectra of the normal tissue samples. (a) An integrated
segmentation map of the normal tissue sample in Fig. 2(a) showing regions classified with fat1,
blood1, ICTb, ICTf, and ICT1 using endmembers extracted from a data cube corresponding to
FOV3. (b) An integrated segmentation map on a group of contiguous data cubes from the sample
Fig. 2(b), showing blood (red), ICT (blue), and fat (yellow) regions classified with their endmembers
locally extracted from the same sample. (c) An integrated segmentation map with their endmem-
bers extracted from a data cube of a different sample. (d) A total integrated segmentation map of
the FOV3 of the sample Fig. 2(a) computed with all endmembers and with corresponding OSCAs
determined from various samples. (e) The top three most abundant endmembers (dotted lines in
blue, orange, and red) identified by the unsupervised K -means analysis on the same data cubes
whose supervised segmentation map is shown in (a). Endmembers from the supervised algorithm
are shown as well for comparison. (f) Unsupervised abundance maps for the first three dominant
clusters are shown in different colors.
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(FOV3). Across the four FOVs, the final segmentation map shows regions classified with fat1,
blood1, ICTb, ICTf, and ICT1 assigned with various colors: yellow, green, bright blue, and dark
blue, respectively. To construct the maps, we used αthi ¼ αorti for these tissue types. The resulting
map demonstrates that: (1) the fat segmentation map (yellow) is continuous across the FOVs
2 and 3; (2) the ICTb is confined near the blood vessels only; (3) ICTf near the fat map; but
(4) ICT1 far away from both blood and fat maps, indicative of our supervised technique is sen-
sitive to classify regions with tissue types with endmembers of subtle differences. More impor-
tantly, these results verify that the algorithm classifies the target tissue types in other FOVs’ data
cubes of the same tissue sample even with locally extracted endmembers.

Next, we demonstrate that our supervised algorithm classifies the target tissue types in other
data cubes of different samples. Figure 7(b) shows an integrated segmentation map on a group
of contiguous data cubes from the sample Fig. 2(b), showing blood (red), ICT (blue), and fat
(yellow) regions classified with their endmembers locally extracted from the same sample. On
the other hand, Fig. 7(c) shows an integrated segmentation map with their endmembers, blood1,
fat, and ICT1, which were extracted from a data cube of different sample, the FOV3 of the sample
in Fig. 2(a). No difference is noticed between two maps in (b) and in (c) regardless whether the
endmembers are from the same or different data cube, implying that a library of (~μi; αthi ) deter-
mined from one data cube of one sample can be globally applied to all the other samples to build
integrated maps classified with the same tissue types if present. To support this claim, Fig. 7(d)
shows a total integrated segmentation map of the FOV3 of the sample Fig. 2(a) computed with
the entire endmembers and with corresponding OSCAs determined for various endmembers,
exhibiting well-classified regions with blood, fat, and ICTs, each assigned with different color.
For this map, αthi (TSCA) for all those tissue types were fixed at αorti (OSCA). The assigned color
to each tissue type is shown at the right side of the map. This segmentation map shows almost the
same color patterns as in Fig. 7(a), verifying the final library of (~μi; αthi ) with all locally extracted
endmembers effectively classifies various tissue types across different samples. Note that the map
should show only tissue types that are present, but IDC-pixels are classified at the perimeter of
the blood regions because α1;IDCðm; nÞ < α1;blood1ðm; nÞ in those regions. From histopathology
reading, we know that the sample does not contain any IDC, so we observe that αthblood1 needs to
be increased above αortblood1 to classify those pixels into the blood type. Further adjustment for an
accurate TSCA (αthi ) determination would be necessary with a ground truth information on the
distribution of the tissue type i.

3.3 Unsupervised Approach to Build Segmentation Maps of Various Tissue
Types Based on the K-Means Algorithm

Building an accurate segmentation map at single-pixel resolution is advantageous for locating
tumor margins with microscopic resolution. The supervised approach based on the SAM algo-
rithm classifies pixels into specific tissue types whose endmember is the most similar to the
spectrum at that pixel, allowing for segmentation maps with spatially resolved regions
classified with various tissue types. In biological tissues, data cubes with pixels with mixed
spectra are common, and the spectral unmixing of tumor spectrum from the others is necessary
to precisely determine the tumor margin. Toward this goal, an unsupervised classification
method based on the K-mean algorithm is demonstrated to build a segmentation map with
spatially resolved regions dominantly with carcinoma. Then, by comparing the segmentation
maps by the supervised SAM against the unsupervised K-means results, the identity of the
unmixed spectra from the K-means algorithm can be validated from the tissue type label
by the supervised analysis. Furthermore, the unsupervised algorithm delineates the degree
of contribution by each endmember when multiple tissue type signatures are mixed within
one pixel.

The K-means algorithm initially involves combining multiple data cubes into one and con-
verting the data cube into a 2D matrix from, X ∈ Rn×p, where n is the number of pixels, and p is
the number of wavelengths. Namely, the ði; jÞ’th entry of X is the reflection intensity of the i’th
pixel at the j’th wavelength. Then, the K-means clustering divides n pixels into k clusters and
minimizes each cluster’s variances by solving the following problem for a disjoint partition of
½1; 2; : : : ; n�, written as ½S ¼ fS1; S2; : : : ; Skg�:

Hwang et al.: Hyperspectral dark-field microscopy of human breast lumpectomy. . .

Journal of Biomedical Optics 093503-14 September 2024 • Vol. 29(9)



EQ-TARGET;temp:intralink-;e008;117;736 min
Xk
i¼1

X
j∈Si

kXj· − μTi k22; (8)

where k · k2 denotes the L2 norm (the square root of the sum of the squared vector values),
μTi ¼ 1

jSij
P

j∈SiXj·, jSij is the cardinality of Si, and Xj· are row vectors of X. The problem is

solved iteratively with initial cluster centers set as k row vectors of X randomly chosen from
all distinct row vectors. Aiming at more stable solutions, we ran 10 random starts for each X.70

The extracted endmembers are fμi; i ¼ 1; 2; : : : ; kg, and the corresponding abundance maps are
fð1SiðjÞÞnj¼1; i ¼ 1; 2; : : : ; kg, where 1SiðjÞ ¼ 1 if j ∈ Si and 1SiðjÞ ¼ 0 otherwise. Abundance
maps with more continuous values are obtained by solving

EQ-TARGET;temp:intralink-;e009;117;609mj ¼ arg min
m∈Rk;m≥0

kUm − XT
j·k2; j ¼ 1; : : : ; n; (9)

where U ¼ ðμ1; μ2; : : : ; μkÞ ∈ Rp×k. Let M ¼ ðm1; m2; : : : ; mnÞT ∈ Rn×k, then the i’th column
of M is the abundance map corresponding to endmember μi (i ¼ 1; : : : ; k), respectively.

Here, with k ¼ 5 and order 5 clusters using the percentage of variance determined by each
cluster, the top five most abundant endmembers were determined. Three abundance maps with
the top three most abundant endmembers, μiði ¼ 1; 2; 3Þ), each in different color, blue (μ1),
yellow (μ2), and red (μ3), are combined and is shown in Fig. 7(f). Each intensity scale bar
in color represents the similarity (i.e., closest to the cluster center) of the spectrum at a pixel
to the endmember μi, quantifying the degree of spectral contribution by corresponding endmem-
ber. For example, some pixels in the combined map are mixed with red, yellow, blue in different
ratios, indicative of subpixel spectral mixing at those pixels, implying spectral unmixing at a
single pixel resolution (1.95 μm) is possible by quantifying the ratio among them. As unsuper-
vised approach does not rely on a priori information on the tissue type for each endmember, the
results need to be validated and each endmember needs to be labeled with a specific tissue type.
Comparing the two segmentation maps in Figs. 7(a) and 7(f), the classified pattern with each
color is in good agreement with each other, enabling assignment of a specific tissue type to each
μi: blue to ICT, yellow to fat, and red to blood. These labeled endmembers are presented in
Fig. 7(e) (dotted lines in blue, orange, and red) along with supervised endmembers for compari-
son, exhibiting the endmembers from the supervised and unsupervised algorithms are in good
agreement to justify the assignment.

3.4 Comparison between the Supervised and Unsupervised Algorithms in
Establishing a Segmentation Map of Carcinoma

Figure 8(a) shows total integrated supervised segmentation maps on two contiguous data cubes
from the sample with IDC [Fig. 2(g)]. Multiple maps shown are at various αthIDC (shown with the
number at the top of each map) computed by the supervised SAM algorithm while keeping the
αthi values of other tissue types fixed at αorti . The maps computed with all endmembers and
corresponding OSCAs exhibit well-classified regions of IDC (purple) and other tissue types,
including blood, epithelium, and fat. The assigned color to each tissue type is shown below the
panel at αthIDC ¼ 0.1. The maps display only tissue types that are detected and classified,
revealing that other tumor types (ILC, IMC, and phyllodes) are not present, verifying that our
supervised algorithm with the library of (~μi; αorti ) for all tissue types identifies an IDC subtype.
Note that more peripheral pixels around the IDC region are classified into blood-segmented
group as αthIDC decreases below αortIDC (see the maps with αthIDC ¼ 0.05 and 0.075) because
α1;blood1ðm; nÞ < α1;IDCðm; nÞ in that region. This phenomenon implies spectral mixing of
~μIDC and ~μblood1 at those pixels, being consistent with an expectation that high blood concen-
tration is associated with the IDC region due to increased micro vessel density (hot spot) in the
vicinity.71,72 Note that the IDC-classified area remains the same at αthIDC ¼ 0.1 > αortIDC as TSCAs
of other tissue types are still higher outside the IDC-classified region.

After analysis with the unsupervised K-means algorithm, three abundance maps with the top
three most abundant endmembers, μiði ¼ 1; 2; 3Þ, each in different color, blue (μ1), red (μ2), and
green (μ3), are combined and shown in Fig. 8(b). Five abundance maps corresponding to the top
five dominant endmembers and their coverage percentages are presented in Fig. S1 in the
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Supplemental Material. Note that the K-means algorithm was applied on a hypercube combined
with the two data cubes. Each intensity scale in the color bar represents the similarity (i.e., closest
to the cluster center) of the spectrum at a pixel to the endmember μi, quantifying the degree of
spectral contribution by the corresponding endmember. Comparing the two segmentation maps
in Fig. 8(a) (at αthIDC ¼ 0.08) and Fig. 8(b), the classified purple regions in (a) and red region in
(b) spatially colocalize, suggesting that μ2 is the endmember of the IDC. Figure 8(c) shows the
abundance map for μ2 (grayscale) superimposed on the supervised map at αthIDC ¼ 0.08 (see the
purple region), confirming their spatial colocalization. In Fig. 8(d), the plot of various endmem-
bers from both supervised and unsupervised results, the IDC endmember plot by unsupervised
algorithm (solid purple curve), and the plot of μ2 (dashed red) are in good agreement, confirming
that μ2 represents IDC. To quantify the agreement, the residual ratio of the supervised IDC end-

member versus the unsupervised for the presented sample, (μSupIDCðλÞ − μUnsupIDC ðλÞÞ∕μUnsupIDC ðλÞ, is
plotted in the solid black line in the same plot, to confirm <2% difference. However, identifying
the counterparts of μ1 and μ3 from endmembers by supervised results is not trivial as the patterns
do not colocalize each other, implying that sub-pixel spectral mixing in other tissue types is
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Fig. 8 Segmentation maps of the IDC. (a) Integrated supervised segmentation maps on two con-
tiguous data cubes from the sample with IDC [Fig. 2(g)]. The numbers in the upper right corners are
various spectral correlation angles, αthi for the detection of IDC. (b) Three abundance maps with the
top three most abundant endmembers, μi (i ¼ 1, 2, 3), each in different colors, blue (μ1), red (μ2),
and green (μ3), are combined. (c) A superimposed image of the unsupervised map in grayscale
with the purple supervised IDC segmentation map at αthIDC ¼ αortIDC ¼ 0.08 to confirm their spatial
colocalization. (d) Endmembers by different methods. The color for each endmember curve is the
same that used for the color for its corresponding
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severe in this tissue sample. In fact, although μ1 (blue dashed) and μ3 (green dashed) resemble the
ICT and fat endmember, respectively, their plots in Fig. 8(d) show subtle differences. To identify
matching endmember pairs of other tissue types, further spectral unmixing needs to be
performed.

Further comparative results presented in Fig. 9 demonstrate the classification of another
carcinoma subtype, IMC. Figure 9(a) shows a total integrated supervised segmentation map
on two contiguous data cubes from the sample with IMC [Fig. 2(f)]. The maps computed with
all endmembers and corresponding OSCAs exhibit well-classified regions of IMC (white) and
other tissue types in different colors. The color of each tissue type is shown next to Fig. 9(a). The
map displays only tissue types that are detected and classified, revealing that other tumor types
(ILC, IDC, and phyllodes) are not present, verifying that our supervised algorithm with the
library of (~μi; αorti ) for all tissue types identifies the IMC subtype. After analysis with the unsu-
pervised K-means algorithm, the three abundance maps with the top three most abundant end-
members, μiði ¼ 1; 2; 3Þ, each in a different color, green (μ1), blue (μ2), and red (μ3), are
combined in Fig. 9(b). Five abundance maps corresponding to the top five dominant endmembers
and their coverage percentages are presented in Fig. S2 in the Supplemental Material. Note that
the K-means algorithm was applied on a hyperpercube combined with the two data cubes.
Comparing these two maps, the classified white regions in (a) and blue region in (b) colocalize
spatially, suggesting that μ2 is the endmember of IMC. Figure 9(c), the abundance map for μ2
(blue) superimposed on the supervised IMC map (see the white region), confirms their spatial
colocalization. In Fig. 9(d), the plot of various endmembers from both supervised and unsuper-
vised results, the IMC endmember plot by unsupervised algorithm (solid gray curve) and the plot
of μ2 (dashed blue) are in good agreement, confirming that μ2 is for IMC. To quantify the agree-
ment, the residual ratio of the supervised IDC endmember versus unsupervised for the presented

sample, (μSupIMCðλÞ − μUnsupIMC ðλÞÞ∕μUnsupIMC ðλÞ, is plotted in black solid line in the same plot, to illus-
trate <2% difference.

3.5 Perspective on the Potential of Expert-Validated Unsupervised Algorithm
for Image-Guided Surgery with High Accuracy

We have demonstrated that the manually extracted, and pathologist-validated, endmembers
of known tissue types including carcinoma subtypes and their associated threshold SCA for
classification make a good reference library which is essential to validate endmembers computed
by the unsupervised algorithm. The library can be used to label classified endmembers by the
unsupervised analysis to identify a target carcinoma endmember and its associated abundance
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Fig. 9 Segmentation maps of the IMC. (a) An integrated supervised segmentation maps on two
contiguous data cubes from the sample with IMC [Fig. 2(f)]. (b) Three abundance maps with the top
three most abundant endmembers, μi (i ¼ 1, 2, 3), each in different color, green (μ1), blue (μ2), and
red (μ3), are combined. (c) A superimposed image of the unsupervised map for μ2 in blue with the
white supervised IDC segmentation map to confirm their spatial colocalization. (d) Endmembers by
different methods. The color for each endmember curve is the same that used for the color for its
corresponding abundance map in Fig. 8(b).
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map. This abundance map defines the spatial distribution of the target carcinoma. Image analyses
with a supervised algorithm can be automated through a computation pipeline with feedback
from the library information. This automated process can be performed in real-time with a pre-
defined library to enable microscopic evaluation of the tumor margin in the operating room,
substantially reducing the risk of a second surgery in BCS. This approach with a validated library
may be applied to other precision medicine applications, such as image-guided surgeries, which
require high accuracy. For instance, selective eradication of tumor cells in micro-neurosurgeries
involving glioblastoma and neurothekeoma may be assisted by the real-time HSI analysis tech-
nique to improve the prognosis and the quality of life of the patient.

4 Conclusion
HSDFM and data cube analysis algorithms demonstrate successful classification of various tissue
types and the detection of carcinoma regions in human post-lumpectomy breast tissues excised
by breast-conserving surgeries. Two classification algorithms, supervised and unsupervised algo-
rithms, are discussed and employed to identify regions with carcinoma subtypes of IDC and IMC
present in the tissues. The two carcinomas’ unique endmembers used by the two methods agree
to <2% residual error margin. One of the key motivations for this report is to demonstrate a robust
procedure for the validation of an unsupervised algorithm with the essential set of parameters
based on the ground truth information. We have demonstrated that a trained library of the histo-
pathology-guided endmembers and associated threshold SCAs computed against well-defined
reference data cubes serve such parameters. This library is collected under an environment with
no ambient background and may be instrumental in developing or validating more advanced
unsupervised data cube analysis algorithms, such as effective neural networks for efficient sub-
type classification, as has been demonstrated in recent work elsewhere.73,74
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