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ABSTRACT. Significance: Hyperspectral imaging (HSI) is an emerging imaging modality for
oncological applications and can improve cancer detection with digital pathology.

Aim: The study aims to highlight the increased accuracy and sensitivity of detecting
the margin of thyroid carcinoma in hematoxylin and eosin (H&E)-stained histological
slides using HSI and data augmentation methods.

Approach: Using an automated microscopic imaging system, we captured 2599
hyperspectral images from 65 H&E-stained human thyroid slides. Images were then
preprocessed into 153,906 image patches of dimension 250 × 250 × 84 pixels. We
modified the TimeSformer network architecture, which used alternating spectral atten-
tion and spatial attention layers. We implemented several data augmentation meth-
ods for HSI based on the RandAugment algorithm. We compared the performances
of TimeSformer on HSI against the performances of pretrained ConvNext and pre-
trained vision transformers (ViT) networks on red, green, and blue (RGB) images.
Finally, we applied attention unrolling techniques on the trained TimeSformer network
to identify the biological features to which the network paid attention.

Results: In the testing dataset, TimeSformer achieved an accuracy of 90.87%, a
weighted F 1 score of 89.79%, a sensitivity of 91.50%, and an area under the receiving
operator characteristic curve (AU-ROC) score of 97.04%. Additionally, TimeSformer
produced thyroid carcinoma tumormargins with an average Jaccard score of 0.76mm.
Without data augmentation, TimeSformer achieved an accuracy of 88.23%, a
weighted F 1 score of 86.46%, a sensitivity of 85.53%, and an AU-ROC score of
94.94%. In comparison, the ViT network achieved an 89.98% accuracy, an 88.14%
weighted F 1 score, an 84.77% sensitivity, and a 96.17% AU-ROC. Our visualization
results showed that the network paid attention to biological features.

Conclusions: The TimeSformer model trained with hyperspectral histological data
consistently outperformed conventional RGB-based models, highlighting the supe-
riority of HSI in this context. Our proposed augmentation methods improved the
accuracy, the F 1 score, and the sensitivity score.
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1 Introduction
Thyroid cancer is one of the fastest-growing types of cancer in the United States with an esti-
mated 43,720 new cases registered in 2023 alone.1 Even though a vast majority (more than 90%)
of thyroid nodules are benign, some patients would develop malignant tumors that can migrate to
other organs.2 The most common types of thyroid cancer originate from follicular epithelial cells.
This includes papillary thyroid cancer (80% to 85% of cases3), follicular thyroid cancer, and
anaplastic thyroid cancer.2 Medullary thyroid cancer, which accounts for only 1% to 2% of all
thyroid cancer cases, originates from the parafollicular C cells.2 Thyroid lobectomy is a common
treatment option if immediate risk is detected. During surgery, a pathologist determines the bor-
der between benign and cancerous tissue on a frozen section and helps identify the positive
margin under a microscope. If cancer remains present at the edge of the tissue, the margin
is labeled as positive, suggesting that the tumor was not entirely resected. The acceptable margin
for thyroid carcinoma ranges from 5 to 20 mm.4 However, the thyroid region is vital for the
quality of life; thus, it is also important to preserve as many non-tumor cells as possible. A bal-
ance is needed between a good negative margin and a good living outcome, and correct deter-
mination of the margin helps.

Machine learning on red, green, and blue (RGB) histopathology images has been a hot topic
for researchers for the last 10 years.5 The goal of automated detection is to generate decision
margins comparable to that of trained pathologists at a fraction of the time and resources. Halicek
et al.6 used a convolutional neural network (CNN) to classify malignant thyroid images against
regular ones with an accuracy of 89.4% and an area under the receiving operator characteristic
curve (AU-ROC) value of 0.954. Range et al.7 reported using CNN to achieve an AU-ROC value
of 0.932. Dov et al.8 used weakly supervised learning to predict thyroid malignancy with an AU-
ROC value of 0.870. Researchers are continuing to improve the performances of machine learn-
ing systems by either introducing more sophisticated learning methods or using novel imaging
modalities. Hyperspectral imaging (HSI) is an optical imaging technique that captures more
spectral information than RGB cameras. HSI has been used on hematoxylin and eosin
(H&E)-stained slides to improve classification results.9–16 Our previous works11,15 showed that
using hyperspectral histology images of head and neck cancer slides to train neural networks can
result in improvements in accuracy compared with RGB images. Sun et al.17 developed deep
neural networks to classify H&E-stained hyperspectral images of cholangiocarcinoma pathology.
Ma et al.13 performed a pixel-level margin assessment on head and neck squamous cell carci-
noma and achieved a median Hausdorff distance of 1.03 mm. Zhou et al.18 combined HSI and
polarized light imaging for the visualization of head and neck carcinoma. However, many chal-
lenges face the development of neural networks for HSI, such as the lack of high-quality hyper-
spectral datasets and interpretable results. In addition, it is unclear why deep neural networks
produce better classification results when trained on hyperspectral data over RGB and what
wavelengths contribute to these improvements.

Typically, CNN is a common method for image classification. CNN uses convolutional fil-
ters to extract features in the spatial and spectral domains. In recent years, vision transformer
(ViT) was used as an alternative to CNN to improve classification results on large datasets.19

Compared with CNN, ViT used the multi-head attention module to extract features. Each atten-
tion head aims to highlight different features using the attention mechanism. In remote sensing,
researchers have explored using a transformer for the task of HSI classification.20–24 However,
applications of transformer networks and HSI in the field of biomedical imaging are relatively
new. Zeng et al.24 used a fusion of CNN and the attention layer to classify nephropathy H&E-
stained slides. Li et al.23 converted the multi-head mechanism into a multi-band attention mecha-
nism and classified cholangiocarcinoma histology samples.

Training transformer networks requires large amounts of data to overcome the lack of induc-
tive bias. With HSI, it is not often feasible to produce data at such a scale. To overcome this, one
can use pretrained networks (networks that have been trained on a vast number of datasets by
other research or commercial institutions) or data augmentation (artificially inflating the existing
dataset by modifying the training images).25 Steiner et al.25 found that, using proper augmenta-
tion techniques to train ViTs, one can achieve similar validation accuracy with only 50% of the
original data. Several data augmentation methods for histology data have been developed. Tellez
et al.26 and Faryna et al.27 proposed augmentation of hematoxylin-eosin-DAB contents. They
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achieved this using a known matrix of RGB responses of different types of stains to estimate the
amount of stain within each image. However, when the number of spectra is large, their methods
fail to estimate the spectral responses. Örnberg et al.28 proposed augmentation of spectral data
with a popular augmentation technique called RandAugment;29 however, their transformations
did not include spatial transformations and were not tested on a large image dataset.

In this paper, we propose using a pretrained video classifier network called TimeSformer,
which is a state-of-the-art architecture for video classification.30 In TimeSformer, there are two
alternating attention layers: a spatial attention layer and a temporal attention layer. Because both
hyperspectral images and videos have an additional dimension that is orthogonal to the spatial
dimension, we believe that a pretrained video classification network can be minimally modified
to classify hyperspectral images. He et al.31 studied 3D deep CNN for HSI classification and
showed skepticisms that pretrained CNN video classifiers can be used for HSI. To address this,
we use a transformer network, which has less inductive bias (narrow assumptions about the data
that influenced the trained network) compared with CNN.19 To our knowledge, we are the first to
report the use of a transformer network with separate spectral and spatial attention layers for the
classification of biological hyperspectral images. We propose new augmentation methods for
RandAugment in the spectral domain, which are based on real physical phenomena and on
non-negative factorization (NMF) decomposition.

The contributions of this study include the following: (1) we modify the temporal attention
mechanism in pretrained TimeSformer and improve the accuracy and sensitivity of HSI classi-
fication, (2) we propose and test new data augmentation techniques specific for hyperspectral
images, and (3) we report a large dataset of whole-slide hyperspectral images (WSHSIs).

2 Materials and Methods

2.1 Acquisition System
The system employed in this study is depicted in Fig. 1(a). It can automatically capture large
WSHSIs. A more detailed description of the system is shown in our previous publication.32 The
system consisted of an upright microscope (Olympus, Tokyo, Japan) and a customized hyper-
spectral snapscan camera that captures images by moving a sensor tiled with Fabry-Perot

Fig. 1 Overview of the acquisition system. (a) Photograph of the acquisition system with its com-
ponents. (b) Flowchart of the automated acquisition software.
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interferometers.33 The hyperspectral camera can image from 467 to 920 nm in 150 spectra, with a
full width at half maximum value ranging from 3.1 nm (487 nm) to 11 nm (900 nm). The maxi-
mum image resolution was 2048 × 2048 pixels. The stage consisted of an X-Y motorized stage
(Thorlabs, Newton, New Jersey, United States) and a Z-direction stepper motor (Prior, Rockland,
Massachusetts, United States). The stage could be controlled in three spatial directions using the
computer. A C++ program was developed to integrate all components together to scan hyper-
spectral images using the flowchart shown in Fig. 1(b).32 First, the stage and the camera identified
the location of maximum focus using the Brenner filter.34 Then, the program moved the X-Y
stage in a predetermined pattern and captured hyperspectral images.

2.2 Histological Specimen
The histological specimens consisted of 65 slides of thyroid cancer, which included three
common types of thyroid carcinoma: papillary thyroid carcinoma (24 slides), follicular thyroid
carcinoma (eight slides), and medullary thyroid carcinoma (three slides). The remaining 30 slides
were normal non-carcinoma thyroid tissue. The specimen collection was described in our pre-
vious publication.6 The gross specimens were fixed, embedded, sectioned, and stained with
H&E.

2.3 Hyperspectral Dataset
Using the instruments described in Sec. 2.1, we produced a dataset of 2599 images of size
2000 × 2000 × 84 pixels, with each image being 2000 pixels in length and width and each image
containing 84 spectra from 467 to 721 nm. The size of the image was predetermined by the
camera manufacturer’s settings. Each image was divided into non-overlapping sub-images of
size 250 × 250 × 84 pixels (Fig. 2) and then resized into 224 × 224 × 84 pixels to fit into pre-
trained networks. The size of the sub-images was chosen to best balance between enough cover-
age of tissue structure and good margin accuracy. An anti-aliasing resizing technique was used to
not introduce resizing artifacts. A 10× magnification objective was used, so each image had a
spatial resolution of 0.556 μm∕pixel.

Before the scanning of each slide, a white reference hyperspectral image was obtained at a
blank area on the slide, and a dark current image was acquired automatically by the camera with
the camera shutter closed. Afterward, each raw hyperspectral image was calibrated with the white
reference and dark current images to obtain the transmittance of the tissue as

EQ-TARGET;temp:intralink-;sec2.3;114;352Transmittance ðλÞ ¼ IrawðλÞ − IdarkðλÞ
IwhiteðλÞ − IdarkðλÞ

;

Fig. 2 Example of hyperspectral images. Each image is 250 × 250 pixels and corresponds to a
spatial field of size 139 μm × 139 μm.
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where transmittance (λ) is the wavelength-dependent transmittance, IrawðλÞ is the intensity value
for wavelength λ in the raw hyperspectral images, and IwhiteðλÞ and IdarkðλÞ are the intensity
values for wavelength λ in the white reference and dark current images, respectively. Each slide
had an accompanying conventional whole-slide RGB image captured using a microscopic image
scanner (Hamamatsu Photonics, Hamamatsu, Japan).6 From the whole-slide RGB images, a
board-certified pathologist determined the gross margins and types of cancer digitally. These
were the ground truths used for validation of the networks.

2.4 Transformer Architecture
We used the “TimeSformer” transformer architecture that was described in our previous work.35

Transformers are multi-layer neural networks that use the mechanism of self-attention. In the
self-attention mechanism, the input data (image, word sequence) is divided into small tokens.
Each token has its own key-value pairs and its own query, so it can be matched with other tokens.
The transformer network trains itself through gradient descent, so appropriate keys, values, and
queries emerge. Queries can be multiplied with keys to produce a matrix of relevant weights, the
result of which is retrieved as “values.”Within a transformer layer, they are represented using the
attention equation, given as

EQ-TARGET;temp:intralink-;sec2.4;117;532Attention ðQ;K; VÞ ¼ softmax
�
QKT∕

ffiffiffi
d

p �
V;

where Q, K, and V are trainable weight matrices that correspond to the query, key, and value,
respectively, and d stands for the length of the Q vectors. The SoftMax equation normalizes the
elements zi within vector z ¼ ½z1; z2; : : : zi; : : : ; zK� using the equation softmax ðzÞ ¼
expðziÞ∕

P
K
j¼1 expðzjÞ. The input images were first divided into 14 × 14 equal-size patches,

and then, each patch was converted into a one-dimensional sequence using a convolutional ker-
nel. Positional and class embeddings were used in a similar manner as with the ViT. The network
consisted of 12 blocks, as shown in Fig. 3(b). Within each block, there were two separate atten-
tion layers: a spectral attention layer followed by a spatial attention layer. Figure 3(a) shows the
graphical representation of spatial attention and spectral attention. In spectral attention, each
patch was compared with other patches in similar spatial positions but at different wavelengths.
In spatial attention, each patch was compared with other patches within the same spectral wave-
length. This scheme of attention produced two different sets of keys, queries, and values
matrices, one for spatial attention and one for spectral attention.

2.5 Augmentation of Spectral Data
Algorithm 1 shows the pseudo-code implementation of RandAugment for HSI. For each
image, RandAugment successively applied three random transformations from the set of
transformations.29 The strengths of the transformations were uniformly random values between
the ranges shown in Table 1. In addition to the list of transformations seen in Faryna et al.27

(identity, rotation, shearing, translation, brightness, and contrast), we proposed the following
tailored transformations: spectral noise, shifting, zeroing, and NMF estimation. We detail the
specifics of each transformation. Rotation rotated the image by its center clockwise anywhere
from 0 to π∕2. Shearing sheared the image either horizontally or vertically from 0% to 50%
of the image length. Translation translated the image either horizontally or vertically from
0% to 50% of the image length. Brightness increased the intensity of the image from 0% to
100% of the image’s maximum intensity. Contrast applied the contrast adjustment equation:
I 0 ¼ 1.0157ðCþ 1ÞðI − 0.5Þ∕ð1.0157 − CÞþ 0.5, where I, I 0, and C are the image before con-
trast enhancement, the image after contrast enhancement, and the contrast score, which ranges
from 0 to 2.0, respectively.36 Sharpen applied the unsharp masking matrix, which can be scaled to
increase or decrease the sharpness.37 Spectral noise applied a uniformly random shift to each
image spectra that ranges from 0% to 50% of the maximum image intensity. Shifting introduced
a linear deviation of the form I 0ðλÞ ¼ IðλÞAðλ − 600 nmÞ, where IðλÞ and I 0ðλÞ are the spectra
before and after modification that are dependent on wavelength λ, respectively, and A is the
strength of the modification that ranges from 0 to 2. Zeroing randomly selected up to three chan-
nels and replaced them with black image bands. This augmentation method mimicked data occlu-
sion schemes such as Cutout.25 NMF estimated the content of different tissue stains and modified
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Fig. 3 TimeSformer architecture modified for HSI. (a) Spatial attention compared the patch with
other patches within the same wavelength band, whereas spectral attention compared the patch
with other patches at the same spatial location but with different wavelengths. (b) The overall
architecture for the TimeSformer network modified for HSI.

Algorithm 1 Hyperspectral RandAugment.

Transformations ← [Identity, Rotate, ShearX, ShearY, TranslateX,
TranslateY, Brightness, Contrast, Sharpen, SpectralNoise, Shifting,
Zeroing, NMF].

for i = 1 to 3 do

Randomly select a transformation

Image = Transform (Image, strength)
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them to simulate different stain concentrations.36 Using NMF, we decomposed the hypercube
into three components, which corresponded to hematoxylin, eosin, and hemoglobin in the stained
slide. The decomposed components were modified using gamma correction I 0 ¼ Iγ, where I and
I 0 are the image before and after modification, respectively, and γ is the gamma score that ranges
from 0.5 to 1.5. We then reconstructed the hypercube from the decomposed cube. Table 1 shows
the range of modifications applied for each transformation. We chose the values from a combi-
nation of experimental values and from values obtained by Faryna et al.27 Figure 4 shows the
effect of augmentations in the spatial domain. Figure 5 shows the effect of augmentations in the
spectral domain.

2.6 Training
To avoid data leakage, we used stratified sampling to split the data into training (28 slides),
validation (seven slides), and test (26 slides) sets. Data was separated by patients, so no patients

Table 1 Ranges of different types of data augmentation used.
The intensity of an image is measured on a scale from 0 to 1,
where 0 is the total black and 1 is the total white.

Transform Range Unit

Identity

Rotate ½0; π∕2� Radians

Translate [0, 0.5] Image length

Shear [0, 0.5] Image length

Contrast [0, 2.0] Multiples of original contrast

Sharpen [0, 5] Sharpening multiplier

Spectral noise [0, 0.5] Intensity

Shifting [0, 2.0] Intensity

Zeroing [0, 3] Number of channels

Brightness [0, 1.0] Intensity

NMF [0.5, 1.5] Gamma correction unit

Fig. 4 Effect of augmentations on the spatial domain of hyperspectral images. For visualization
purposes, we applied transformation from HSI into RGB images using the method from Ma et al.14
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contributed to two splits. Table 2 shows the number of 250 × 250 × 84 images used for each
dataset. In the training dataset, there were 47,630 images (56% of the training data) labeled nor-
mal and 37,627 images (44% of the training data) labeled cancer. In the validation dataset, there
were 10,273 images (47% of the validation data) labeled normal and 11,379 images (53% of the
validation data) labeled cancerous. In the test dataset, there were 26,539 images (56% of the test
data) labeled normal and 20,638 images (44% of the test data) labeled cancer.

TimeSformer networks were trained for 15 epochs using a batch size of 16 and an initial
learning rate of 1 × 10−3. We initialized the model with the pretrained weights from Bertasius
et al.30 The optimizer used was stochastic gradient descent with a Nesterov momentum value of
0.9 and a learning rate decay of 0.5 every five epochs. The epoch that achieved the maximum
validation F1 score was selected for testing. The training was implemented in PyTorch using
graphic processing units on high-performance computers. We trained two TimeSformer net-
works, one with and one without the augmentation methods described in Sec. 2.5.

We trained three additional networks for comparison with TimeSformer: a ConvNext trained
on HSI, a ConvNext trained on RGB images, and a ViT trained on RGB images. We modified the
“patchify” block of ConvNext38 to expand the input kernel into 84 input channels. This technique
of increasing the number of input layers in pretrained CNN to fit HSI is shown to be effective in
classifying H&E-stained hyperspectral data.11,14 To train ConvNext on HSI, a batch size of 16

Fig. 5 Effect of augmentations on the spectral domain of hyperspectral images. The spectra were
generated by taking the spectrum average of the image patch. Blue dashed lines mark the original
average spectra. Black solid lines mark the transformed average spectra.

Table 2 Number of images used for the training, validation, and
test datasets.

Normal Cancer Total

Train 47,630 37,627 85,257

Validation 10,273 11,379 21,652

Test 26,359 20,638 46,997

Total 84,262 69,644 153,906
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and an initial learning rate of 1 × 10−3 were used. All training data were augmented using the
method described in Sec. 2.5. The RGB images were synthesized from HSI using the method by
Ma et al.14 To train ConvNext and ViT on RGB images, a batch size of 64 and an initial learning
rate of 1 × 10−3 were used. In all networks, we used stochastic gradient descent with a Nesterov
momentum value of 0.9 and a learning rate decay of 0.5 every five epochs. For augmentation, we
used the default RGB RandAugment transformations in the PyTorch library.

2.7 Evaluation Metrics
We compared the performances of each network on the task of identifying thyroid cancer per
image. The networks classified an image as either containing or not containing cancer cells based
on labels provided by a clinically trained pathologist. For each model, the accuracy, the F1 score,
the AU-ROC, and the sensitivity score (also known as recall) were calculated. We then tested the
performance of each network in identifying the cancer margin. The test dataset consisted of nine
WSHSIs. To generate the cancer margin for each whole-slide image, we performed morphologi-
cal opening (erosion followed by dilation) on each prediction. The metrics used to evaluate mar-
gins were the Jaccard index (intersection over union) and the Hausdorff distance. The Jaccard
index JðA; BÞ ¼ jA ∩ Bj∕jA ∪ Bj calculates the intersection between two sets A and B over their
union. The Hausdorff distance measures the largest distances between two morphological seg-
mentations:

EQ-TARGET;temp:intralink-;sec2.7;117;507dHðX; YÞ ¼ max

�
sup
x∈X

dðx; YÞ; sup
y∈Y

dðX; yÞ
�
;

where sup f refers to the supremum of function f and dða; BÞ ¼ infb∈B dða; bÞ refers to the
infimum of the distances from points a ∈ X to points b ∈ B.

2.8 Attention Unrolling
We visualized the weights of the trained attention modules using the attention unrolling
technique.19 This method aggregates all attention weights across all layers into one. At each
layer L, a single head produced an attention map Ah;L, which was the SoftMax multiplication
of the keys Kh;L and queries Qh;L. The attention maps were averaged across all heads and added

with the identity matrix I to produce the layer attention matrix ÂL. The rollout attention was
calculated as the dot product of all attention maps at all layers.

EQ-TARGET;temp:intralink-;sec2.8;117;346Attentionh;L ¼ softmaxðQh;LKT
h;LÞ

EQ-TARGET;temp:intralink-;sec2.8;117;309ÂL ¼ Iþ averageðattentionLÞ;

EQ-TARGET;temp:intralink-;sec2.8;117;289Rollout ¼ Â1 ⊙ Â2 ⊙ : : : ⊙ Â12:

The rollout attention matrices were scaled from 0 to 1 to produce attention heatmaps that showed
the attention that TimeSformer paid to different biological features at different wavelengths.

3 Results

3.1 Classification Results
TimeSformer trained on the HSI dataset achieved an accuracy score of 90.87%, an F1 score of
89.79%, a sensitivity score of 91.50%, and an AU-ROC score of 97.04%. Without data augmen-
tation, TimeSformer achieved an accuracy score of 88.23%, an F1 score of 86.46%, a sensitivity
score of 85.53%, and an AU-ROC score of 94.94%. ConvNext trained on the HSI dataset
achieved an accuracy score of 90.38%, an F1 score of 88.74%, a sensitivity score of
86.27%, and an AU-ROC score of 96.23%. ViT trained on a synthesized RGB dataset achieved
an accuracy score of 89.98%, an F1 score of 88.14%, a sensitivity score of 84.77%, and an AU-
ROC score of 96.17%. ConvNext trained on a synthesized RGB dataset achieved an accuracy
score of 89.31%, an F1 score of 87.84%, a sensitivity score of 87.91%, and an AU-ROC score of
95.63%. Table 3 shows that TimeSformer achieved the highest accuracy, F1 score, sensitivity,
and AU-ROC score of all networks on the test dataset. The results achieved by TimeSformer on
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the thyroid dataset are greater than those achieved by Halicek et al.6 on the same set of H&E-
stained thyroid slides, which achieved an accuracy of 89.4% and an AU-ROC score of 95.4%.

3.2 Cancer Margin Detection in Whole-Slide Images
Out of the four networks tested, TimeSformer achieved the overall best average Hausdorff
distance of 0.76 mm� 0.33 mm, with a maximum of 1.47 mm and a minimum of 0.44 mm.
In comparison, ConvNext trained on HSI achieved an average Hausdorff distance of
1.07� 0.73 mm, ViT trained on RGB achieved an average of 0.99� 0.64 mm, and ConvNext
trained on RGB achieved an average of 1.08� 0.52 mm. The results showed the ViT performs
better for hyperspectral images. Table 4 shows the Hausdorff distance achieved on each slide.
The table shows that typically slides that achieved good performances in TimeSformer also
achieved good performances on other networks, and vice versa. The table also shows that
TimeSformer produced good margins more consistently compared with other networks, as
evidenced by the lower standard deviation value.

Figure 6 shows the carcinoma margins in four representative slides. Figure 6(a) depicts slide
7, which contains papillary thyroid carcinoma. In this slide, the network achieved a Hausdorff
distance of 0.67 mm and a Jaccard score (intersection over union) of 0.95. Figure 6(b) depicts
slide 1, which contains follicular thyroid carcinoma. In this slide, the network achieved a
Hausdorff distance of 0.65 mm and a Jaccard score of 0.88. Figure 6(c) depicts slide 2, which

Table 3 Accuracy, F 1 score, sensitivity, and AU-ROC scores for the test dataset.

Dataset Network

Test metrics (%)

Acc F 1 Sen AU-ROC

HSI TimeSformer (with augmentation) 90.87 89.79 91.50 97.04

TimeSformer (no augmentation) 88.23 86.46 85.53 94.94

ConvNext-HSI 90.38 88.74 86.27 96.23

S-RGB ViT-RGB 89.98 88.14 84.77 96.17

ConvNext-RGB 89.31 87.84 87.91 95.63

Data in bold means the highest score out of the four networks. HSI, hyperspectral image dataset; S-RGB,
synthesized RGB image dataset; Acc, accuracy; Sen, sensitivity (recall).

Table 4 Performance in terms of the Hausdorff distance on each
slide. Data in bold refer to the network with the best performance.

Slide TimeSformer ConvNext-HSI ViT-RGB ConvNext-RGB

1 0.65 0.69 0.61 1.38

2 1.47 1.52 1.46 1.47

3 0.69 2.42 1.81 1.28

4 0.50 0.49 0.34 0.40

5 0.44 0.54 0.63 0.63

6 0.58 0.52 0.55 0.51

7 0.67 0.61 1.15 1.16

8 0.78 0.80 0.35 0.87

9 1.10 2.01 2.01 2.02

μ� σ 0.76 ± 0.33 1.07 ± 0.73 0.99 ± 0.64 1.08 ± 0.52
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is a follicular carcinoma slide and the slide with the worst performance. Examination of the slide
reveals that the classifier associated some fibrous structures with normal tissues, which might not
be accurate for this particular instance. Figure 6(d) depicts slide 5, which is a papillary carcinoma
slide and the slide with the best performance. Examination of the slide reveals that other networks
also achieved good results on slide 5 and that slide 5 has a very clear delineation between car-
cinoma and normal tissues.

3.3 Visualization of Attention in Transformer
Figure 7 shows the spatial attention map of the trained network on an image of papillary thyroid
carcinoma, for which the network produced an accurate prediction with a confidence of 96.51%.
It could be seen that spatial attention was highest among the clusters of nuclei in the middle
section; this attention was consistent across all wavelengths and highest in the blue-green wave-
lengths (470 to 540 nm). We attribute this to the fact that hematoxylin stains the nucleus blue, so
nuclei were highlighted for the ViT. Our findings were consistent with the findings of Halicek
et al.,6 which showed that deep neural networks focus on nuclei to predict the probability of
cancer.

Fig. 6 Cancer margins predicted on four thyroid whole slides. The black border shows the pre-
dictions made by the pathologist, and the red border shows the predictions made by TimeSformer.
Whole-slide images were captured by a whole-slide histology scanner. (a) Whole-slide image of
thyroid diagnosed with papillary carcinoma. (b) Whole-slide image of thyroid diagnosed with fol-
licular carcinoma. (c) Whole-slide image of thyroid diagnosed with follicular carcinoma. (d) Whole-
slide image of thyroid diagnosed with papillary carcinoma. The RGB images were taken using a
whole-slide histology scanner.
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Figure 8 shows the attention map of the trained network on a patch of healthy and normal
thyroid cells. The network produced a correct prediction with 99.53% confidence. It could be
seen that spatial attention was highest in the regions of follicular colloid, which are the fluid-filled
sections of the thyroid follicle. Less attention was paid to the surrounding follicular thyroid cells.
Spatial attention was consistent across all wavelengths and highest in the blue-green wavelength
bands (470 to 540 nm).

4 Discussion and Conclusion
In this paper, we trained the TimeSformer network for the hyperspectral image dataset and devel-
oped hyperspectral augmentation methods to improve the classification performance. To that
end, we showed the hyperspectral advantage in cancer margin detection on H&E slides of thyroid
cancer patients. We trained HSI and RGB images on different machine learning networks.
Using TimeSformer with augmentation, we achieved improvements in all metrics compared

Fig. 7 Attention map of an image that showcased papillary thyroid carcinoma. The RGB image
was taken using a whole-slide histology scanner.

Fig. 8 Attention map of an image that showcased regular healthy thyroid. The RGB image was
taken using a whole-slide histology scanner.
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with the state-of-the-art networks on RGB data. We believe that such an improvement is
generally difficult to achieve within the field of machine learning and that the metrics improve-
ments bring clinical improvements. Deep learning methods can have tradeoffs between sensi-
tivity and specificity, so a method that improves all metrics can be generally difficult.6 In terms of
clinical applications, improved accuracy and sensitivity leads to better diagnosis with more
confidence. Furthermore, we believe that TimeSformer is more consistent compared with
existing machine learning networks, which translates to more consistent clinical diagnosis for
patients.

The TimeSformer achieved the best mean outcome with an average Hausdorff distance of
0.76 mm� 0.33 mm. This result was an improvement over that of Ma et al. on the same
dataset13 and is comparable to that of existing literature.39–41 However, it is important to acknowl-
edge that the mean Hausdorff distances for all algorithms overlap significantly within these
uncertainties. This overlap indicates that, although TimeSformer has the best average perfor-
mance, it may not consistently outperform the other algorithms in every instance. From a prac-
tical standpoint, the consistent performance of TimeSformer, as indicated by its lower standard
deviation, is advantageous. In clinical applications, for which reliability and consistency are
paramount, an algorithm that performs well across a wide range of scenarios is often preferred.
The average Hausdorff distance was less than 1 mm, with the highest being less than 2 mm.
This value is considered reasonable within clinical use.4,13 Slides that performed well with
TimeSformer also tended to show good performance with other networks, indicating a correla-
tion in performance across different algorithms for the same slides. This suggests that certain
slides inherently pose more or fewer challenges regardless of the algorithm used. Although
TimeSformer generally achieves the best average performance, there are instances in which other
networks may outperform it on specific slides. This underscores the importance of evaluating
multiple metrics and considering the context of each image when assessing algorithm perfor-
mance. The real-world implications of adopting our algorithm are significant. More accurate
and consistent margin assessments can lead to better surgical planning, ensuring that tumor mar-
gins are accurately identified and excised, which is critical for patient outcomes. Improved mar-
gin detection reduces the likelihood of residual tumor cells being left behind, thereby decreasing
the chances of recurrence and the need for additional surgeries. We anticipate that its implemen-
tation could streamline the workflow in clinical settings, providing pathologists with a reliable
tool to assist in margin assessment. This could lead to more efficient and accurate diagnoses,
ultimately benefiting patient care.

The findings from the augmentation methods further substantiate the hyperspectral advan-
tage. Spatial augmentations likely increased the invariance of the models to shifts and rotations,
whereas spectral augmentations likely boosted the model’s ability to recognize relevant spectral
features. These augmentation techniques may have contributed to the robustness of our models to
variations and anomalies, improving their generalizability on the validation and test datasets.
Although our results are promising, we acknowledge that further validation is required before
widespread clinical adoption. Our current evaluation is based on a limited dataset, and it is essen-
tial to test the algorithm on a larger and more diverse set of hyperspectral whole-slide images.
This will help ensure that the algorithm’s performance is robust and generalizable across differ-
ent types of tissues and imaging conditions.

Our experiments showed that both TimeSformer and ConvNext trained on HSI outperformed
ViT and ConvNext trained on RGB images. Our findings were in line with our previous work,
which used a Visual Geometry Group (VGG)-19 network to train on HSI data and found improve-
ments in AU-ROC compared with that of a VGG-19 network trained on RGB images.11,14 It was
also similar to the findings by Sun et al.17 that found improvements on the same networks when
trained on a hyperspectral image dataset compared with on RGB images. This could be unintuitive
at first as H&E stains have few well-known peaks, so additional wavelengths may not provide
additional information. However, we believe that hyperspectral images provide an advantage over
RGB images because it can increase the contrast between stains and dyes. More research needs to
be done to identify potentially useful wavelengths related to H&E stain classification.

Our study involves visualizing and unrolling the attention layers of the TimeSformer model.
The process of unrolling refers to breaking down the attention patterns at each temporal dimen-
sion. In this way, we hoped to discern how attention weights evolve across the spectrum. To our
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knowledge, this represents the first work that uses ViT visualization to reveal biological features
of interest in thyroid histopathology. Although the TimeSformer architecture allows for a robust
temporal understanding of hyperspectral images, the interpretability of its attention mechanism
poses significant challenges. Visualizing attention scores can be misleading, primarily because
the correlation between high attention weight and feature importance is not always straight-
forward.42 One might incorrectly infer that positions with lower attention weights are less critical,
whereas these positions might be influential when interacting with other positions or through
multiple layers of attention. Although previous literature has highlighted nuclei as key points
of attention, our study uniquely identifies follicular colloids as regions of significant attention.
This novel finding requires careful consideration as it may suggest new avenues for understand-
ing the pathology of thyroid conditions. The broader implications of this attention are multi-
faceted. Consistent identification of nuclei and follicular colloids could imply that the algorithm
is robust, leveraging these features as reliable indicators for distinguishing cancerous from non-
cancerous regions. This robustness is particularly advantageous in clinical applications, for
which consistent and reliable features are essential for accurate diagnosis. However, the focus
on these features also raises potential challenges. If nuclei and follicular colloids appear incon-
sistently across different images, this could introduce variability in the algorithm’s performance,
potentially hindering its reliability in a broader range of clinical scenarios. Therefore, further
research is necessary to investigate the consistency of these features across diverse datasets and
their overall impact on the algorithm’s effectiveness. It is essential to consider attention unrolling
to be just one of many tools to interpret these complex models. Future work could involve
developing more reliable methods of interpreting attention or exploring other aspects of the
TimeSformer model.
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