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ABSTRACT. Significance: The dual-wedge prism (DWP)-based spectroscopic single-molecule
localization microscopy (sSMLM) system offers improved localization precision and
adjustable spectral or localization performance, but its nonlinear spectral dispersion
presents a challenge. A systematic method can help understand the challenges and
thereafter optimize the DWP system’s performance by customizing the system
parameters to maximize the spectral or localization performance for various molecu-
lar labels.

Aim: We developed a Monte Carlo (MC)-based model that predicts the imaging
output of the DWP-based sSMLM system given different system parameters.

Approach: We assessed our MC model’s localization and spectral precisions by
comparing our simulation against theoretical equations and fluorescent micro-
spheres. Furthermore, we simulated the DWP-based system using beamsplitters
(BSs) with a reflectance (R):transmittance (T) of R50:T50 and R30:T70 and their
tradeoffs.

Results: Our MC simulation showed average deviations of 2.5 and 2.1 nm for locali-
zation and spectral precisions against theoretical equations and 2.3 and 1.0 nm
against fluorescent microspheres. An R30:T70 BS improved the spectral precision
by 8% but worsened the localization precision by 35% on average compared with an
R50:T50 BS.

Conclusions: The MC model accurately predicted the localization precision, spec-
tral precision, spectral peaks, and spectral widths of fluorescent microspheres, as
validated by experimental data. Our work enhances the theoretical understanding of
DWP-based sSMLM for multiplexed imaging, enabling performance optimization.
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1 Introduction
Single-molecule localization microscopy (SMLM) allows for sub-diffraction-limit imaging of
biological structures down to 10 nm,1–3 with spectroscopic SMLM (sSMLM) extending
this capability to imaging multiple molecular contrasts through analysis of single molecular fluo-
rescence emission spectra.4–10 In sSMLM, a dispersive component, such as a grating4–7 or a
prism,8–10 divides photons from each blinking event to form a spatial image for localization and

*Address all correspondence to Hao F. Zhang, hfzhang@northwestern.edu

Journal of Biomedical Optics S11502-1 Vol. 29(S1)

https://orcid.org/0000-0003-2181-1673
https://orcid.org/0000-0002-2744-0896
https://orcid.org/0000-0001-5089-1196
https://doi.org/10.1117/1.JBO.29.S1.S11502
https://doi.org/10.1117/1.JBO.29.S1.S11502
https://doi.org/10.1117/1.JBO.29.S1.S11502
https://doi.org/10.1117/1.JBO.29.S1.S11502
https://doi.org/10.1117/1.JBO.29.S1.S11502
https://doi.org/10.1117/1.JBO.29.S1.S11502
mailto:hfzhang@northwestern.edu
mailto:hfzhang@northwestern.edu


a spectral image for spectroscopic analysis. Hence, sSMLM can identify each fluorophore based
on its characteristic spectrum with nanoscopic spatial precision.

The main constraint limiting higher performance in both SMLM and sSMLM is the photon
budget.11,12 Gratings used in sSMLM are associated with high transmission losses (∼30%),
reducing the photon budget, which worsens localization and spectral precisions.11–13 By contrast,
prism-based sSMLM has lower transmission losses but a higher aberration, which causes im-
aging artifacts.13 To address these issues, we recently developed a dual-wedge prism (DWP)-
based sSMLM that features lower transmission losses, reduced aberrations, the ability to perform
highly multiplexed imaging within an extended spectral range, and an adjustable splitting ratio
for spatial and spectral imaging.13 Using DWP-based sSMLM poses challenges, such as a non-
uniform spectral dispersion, which is poorly understood, but also benefits, such as an adjustable
beamsplitter (BS) ratio that allows us to maximize the localization or spectroscopic performance.

First, the DWP module provides a higher transmission efficiency than the grating, allowing
us to expand our highly multiplexed imaging capabilities through increased localization and
spectral precision. Although the DWP module exhibits a nonlinear spectral dispersion, we pre-
viously assumed a constant spectral precision in our theoretical analysis of DWP-based sSMLM
because we restricted its operation to a limited spectral range of 650 to 800 nm.12,13 When we
extend the spectral range to 450 to 800 nm, which is possible with the DWP due to its higher
transmission efficiency throughout the entire spectral range, the spectral dispersion may no
longer be considered constant because spectral precision is a function of spectral dispersion.12

Next, the splitting ratio of the BS within the DWP module may be tailored for specific im-
aging requirements for imaging fluorophores with different emission spectral bandwidths. This is
because adjusting the splitting ratio in the DWP module leads to a varying tradeoff between
spatial and spectral precisions because the total photon budget is shared between the spatial and
spectral channels. Although several simulation packages have been developed to help users opti-
mize SMLM imaging conditions and understand SMLM imaging results,14–20 none of the pack-
ages directly simulate the spectra of the fluorophores. In addition, sSMLM imaging parameters,
such as the choice of fluorophores and splitting ratios, affect the photon budget, which in turn
affects the imaging performance quantified by the localization and spectral precisions. The rela-
tionship between the imaging conditions and localization and spectral precisions is intrinsically
connected but poorly understood in DWP-based sSMLM.

Therefore, there is a need to thoroughly investigate the tradeoff between the extended spec-
tral range and the additional flexibility of variable beamsplitting ratios afforded by the DWP
module. In this work, we develop a Monte Carlo (MC) simulation of the 2D-DWP imaging
process of individual fluorophore blinking events and determine each fluorophore’s spectral and
spatial precisions. Our MC simulation of the 2D-DWP imaging process provides valuable
insights into optimizing experimental conditions for imaging, eliminating the need for trial and
error. By accurately estimating the localization precision and spectral precision with different
splitting ratios, we can directly determine the ideal experimental parameters with different
experiments. This optimization enables the use of more fluorophores in a single experiment,
unlocking the potential to analyze intricate biological interactions at the nanoscale. The imple-
mentation of these refined experimental conditions for multiplexed experiments will enhance our
ability to study and understand more complex biological interactions.

2 Methods

2.1 Image Formation Process
The MC simulation modeled our current 2D-DWP-based sSMLM system as previously
reported.13 We used two excitation lasers (532 nm, Exlsrone-532-200, Spectra-Physics; and
647 nm, 2RU-VFL-P-2000-647-B1R, MPB Communications) and an inverted microscope body
(Ti2-E, Nikon) equipped with a 100× total-internal reflection fluorescence (TIRF) objective (CFI
Apochromat TIRF 100XC Oil, Nikon). Figure 1(a) shows the photon flow in the detection path.
The emitted photons from the fluorescent sample pass through a DWP module, consisting of a
BS prism (BS010 for R50:T50; and BS049 for R30:T70, Thorlabs), a right-angle prism (RAP)
(84-514, Edmund Optics), and a custom-made DWP.13 The BS divides the photons into a spatial
imaging (zeroth order) path and a spectral imaging (first order) path. The RAP then reflects
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photons in the spatial imaging path, and the custom-made DWP disperses the photons in the
spectral imaging path. Finally, an electron-multiplying charge-coupled device (EMCCD)
(iXon Ultra 897, Oxford Instruments) simultaneously detects all of the photons in the zeroth
order and first order paths for further processing.

2.2 MC Simulation Process
Figure 1(b) shows our MC simulation process, from the generation of a blinking event by indi-
vidual fluorophores to image detection. We start from the ground truth of N photons emitted in a
single frame from one photoswitching event with parameters x, y, and λ, where N photons are
either sampled from a lognormal function or assumed to be a constant value, x and y are the
spatial positions of each photon, and λ is the wavelength of each photon sampled from the emis-
sion spectra. Because BSs often have wavelength-dependent splitting ratios and introduce photon

Fig. 1 Illustration of the 2D-DWP image formation and MC simulation steps. (a) Schematic of the
2D-DWP image formation; (b) photon emission simulation process; (c) a simulated image of the
photon distribution on the EMCCD following aGaussian distribution of photon wavelengths; (d) cor-
responding EMCCD-detected image for photon distribution shown in panel (c); (e) simulated
EMCCD background, including background and readout noises; (f) combined image from panels
(d) and (e); (g) 1D fitting the spectral peak and with from spectral profile, where the zeroth order
image provides the reference needed to obtain the corresponding first order spectral information;
(h) measured photon count distribution of AF647 with a 10 ms exposure time; (i) measured bulk
emission spectrum of AF647; (j) measured x and y variations of the individual photons due to the
diffraction limit, with x - and y -summed histograms shown; (k) measured spectral deflection char-
acteristics of the DWP module, and (l) measured ratios of first order/zeroth order efficiency in the
DWP module when different BSs are used. RAP, right-angle prism; BS, beamsplitter.
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losses, we pass the N photons through an efficiency function εðλÞ to determine whether each
photon goes to the zeroth order path or first order path or is lost. Photons in the zeroth order path
will be detected directly by the EMCCD, whereas photons in the first order path will pass through
a dispersion function fðλÞ to determine their wavelength-dependent shift along the x-axis (xdisp),
mimicking the behavior of the DWP. Next, we combine the locations of the photons, X ¼ xþ
xdisp and Y ¼ y, to determine the exact locations where each photon will be incident on the
EMCCD array in Fig. 1(c). This signal is then discretized by individual EMCCD elements due
to the finite pixel size (a) with varying intensities to give a signal (S) illustrated pictorially in
Fig. 1(d). We further add a background signal consisting of Poisson-distributed background
noises (B) and Gaussian-distributed readout noises21 (R), shown in Fig. 1(e). By summing the
digitized signals from Figs. 1(d)–1(e), we apply signal amplification using a Gamma distribution,
which is known to effectively model the behavior of an EMCCD21. This process yields Z, the
simulated sSMLM frame shown in Fig. 1(f).

To obtain the subpixel peak location from the zeroth order spatial image, we fit the zeroth
order image with a bivariate Gaussian function using the maximum likelihood estimation (MLE)
method,11 giving us an estimate of the expected values of the peak locations x and y as x̂ and ŷ,
respectively. To obtain the spectral peak from the first order spectral image, we first calibrate the
x-axis of the spectral graph with a spectral calibration procedure (detailed in Sec. 2.4), which
allows us to calculate the wavelength values along the x-axis for each zeroth order localization.
We then fit the spectrally calibrated image with either a univariate or bivariate Gaussian function
to estimate the spectral peak (μ̂λ) and spectral width (σ̂λ) together with the spatial localization.
The procedure is illustrated with a one-dimensional (1D) spectral graph in Fig. 1(g), where we
integrated the signal intensity along the y-axis for clarity. An alternative method commonly used
for spectral characterization is the spectral centroid method, which takes the weighted average of
the different wavelengths detected to calculate a spectral centroid associated to each
localization.12,13,22 In this study, we fitted the resulting image with a bivariate Gaussian function.
This approach enhances noise rejection by taking advantage of the larger number of samples
available in 2D data, as opposed to summing it along the y-axis in 1D. As the 2D Gaussian
fit utilizes information from both dimensions, it provides a more accurate representation of the
underlying distribution and consequently improves the robustness against noise.

To illustrate the functions N, λ, fðλÞ, and εðλÞ in Table 1 used in the simulation, we extracted
the distribution of photon count and spectral signature of the commonly used SMLM dye Alexa
Fluor 647 (AF647). Figure 1(h) shows the lognormal fitted distribution of photon counts N of
AF647 extracted using the process described in Sec. 2.3.1. Figure 1(i) shows the spectral dis-
tribution λ of AF647 obtained with the procedure described in Sec. 2.3.2, and Fig. 1(j) shows a
simulated point spread function (PSF) using a 2D-Gaussian function, which is a close approxi-
mation to the Airy disc.23 Figure 1(k) shows the spectral dispersion function, fðλÞ, experimen-
tally measured using the procedure described in Sec. 2.3.3. Figure 1(l) shows the efficiency
function, εðλÞ, for BSs with reflectance (R):transmittance (T) of R30:T70 and R50:T50 exper-
imentally measured using the procedure described in Sec. 2.3.4. Finally, we repeated the process
20,000 times to obtain the spatial and spectral precisions, defined as the standard deviation of x̂
and μ̂λ, respectively. We summarize the parameters used in the simulation in Table 1.

2.3 Extraction of Parameters from Experimental Data

2.3.1 Distribution of photon counts

To obtain physical values for the simulation, we extracted key parameters used in our MC sim-
ulation from our sSMLM experimental data. Figure 1(h) shows the histogram of the photon count
N of AF647 molecules imaged at an exposure time of 10 ms. The photon counts were determined
using ThunderSTORM,24 and the values obtained were fitted with a lognormal distribution.25

2.3.2 Spectral distribution of fluorophores/microspheres

The example spectral signature of AF647 shown in Fig. 1(i) can usually be obtained from open-
source databases, such as FPbase.26 For data unavailable in FPbase, such as for microspheres
tested in this work, we perform a visible-infrared (Vis-IR) measurement of the emission spectra
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using the Nanodrop 3300 fluorospectrometer, which provides the bulk emission spectra of the
microspheres.

2.3.3 Spectral dispersion of the DWP module

We experimentally determined the spectral dispersion of the DWP module using a supercontin-
uum laser with an acousto-optic tunable filter (AOTF) to precisely adjust the output wavelength.

Table 1 Summary of simulation parameters.

Parameter Meaning Value/definition

Vectors describing each photon in a single localization event

x , y Vectors of calculated x and y positions —

λ Vector of wavelengths —

θ Vector of the paths taken by the photons after the BS —

xdisp Vector of x dispersions due to the DWP module —

Matrices describing each pixel in the EMCCD pixel array

S Signal on the pixel array S; Si;j ¼
P

i ;j ðx; yÞ

B Background noise on the pixel array B ∼ PoðbbgÞ

R Readout noise on the pixel array R ∼ Nð0; broÞ × A∕ADU

Z Output on the EMCCD pixel array Z ¼ ΓðSþ B; AÞ∕ADUþ R

Z 0 Output on the EMCCD pixel array after background subtraction Z 0 ¼ Z − A∕ADU × bbg

Functions used in the simulation

N PDF of the number of photons from fluorophore N ∼ lognormalðμ; σ2Þ

λ PDF of the wavelength of photon from the fluorophore spectrum Custom function

εðλÞ Efficiency function of the DWP module εðλÞ ∈ 0;1;−1

f ðλÞ Spectral dispersion function of the DWP module f ðλÞ ¼ xdisp

Constants used in this paper

N Number of photons from fluorophore 700

bbg Mean number of background photons per pixel 15

bro Standard deviation of readout noise 1.9 e−

A Gain on the EMCCD output 100

U Analog to digital unit on the EMCCD 13.6

ax , ay Pixel size 16 μm∕px

aλ Spectral dispersion (linear equivalent) 4.3 nm/px

NA Numerical aperture 1.49

FEM Electron multiplying factor
ffiffiffi
2

p

c Conversion factor between FWHM and standard deviation 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
.
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We measured the angular deflection of the beam of the DWP module compared with the mea-
surements without the DWP module inserted at different wavelengths. The experimental angular
deflection curve was validated by the theoretical curve given by the Sellmeier equation,27 as
shown in Fig. S1(a) in the Supplementary Material, with a good agreement. To better fit the
theoretical curve, we used a rational function and found that the following equation works
satisfactorily from 400 to 900 nm, given as

EQ-TARGET;temp:intralink-;e001;114;664xdisp ¼ fðλÞ ¼ 8495ξþ 6132

ξ2 þ 29.82ξþ 74.03
; (1)

where ξ ¼ λ−650
144.342

is a scaling factor. Because Eq. (1) is an invertible rational function, we find the
inverse equation as

EQ-TARGET;temp:intralink-;e002;114;603

λ ¼ f−1ðxdispÞ

¼ 144.342

�4247.5 − 14.91xdisp −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
148.278x2disp − 120528xdisp þ 18041300

q
xdisp

�
þ 650 (2)

to obtain the wavelength from the angular deflection. Equation (2) adequately describes the scal-
ing and translation optical transformations associated with using the DWP module. This is
because, after any beam passes through the DWP module, the only transformations it can
undergo are scaling (when the path length between the DWP module and the camera plane
is changed) or translation (when the path length between the zeroth and first orders on the camera
plane is changed). Following this, a linear equation between the linear dispersion and the photon
wavelength can describe any spectral calibration curve of the DWP module as

EQ-TARGET;temp:intralink-;e003;114;456xscaled ¼ afðλÞ þ b; (3)

where a is the scaling factor and b is the translation factor. We use Eq. (3) to compute the spectral
window of interest in the pixel for each localization detected in the spatial image. However, when
we need to compute the spectral peak or spectral width, we combine the results of Eq. (2) and the
inverse of Eq. (3) to get

EQ-TARGET;temp:intralink-;e004;114;385λ ¼ f−1
�
xscaled − b

a

�
: (4)

We compared the theoretical and the empirical curve in Fig. S1(b) in the Supplementary
Material and found the angular error between the theoretical and the empirical curve to be <0.3%.

2.3.4 Optical transmission efficiency of the DWP module

We evaluated the optical transmission efficiencies of the BS, RAP, and DWP by measuring the
transmitted and reflected optical power ratios using a supercontinuum laser with an AOTF setup,
as described in Sec. 2.3.3. We then calculated the efficiencies at different wavelengths by cal-
culating the ratios of transmitted (PT) and reflected (PR) optical power to the total incident power
(PI). Because our AOTF adjustable spectral range was from 450 to 690 nm, we used the data to
validate the Thorlabs datasheet for the BSs. To extend the spectral range beyond 690 nm for the
RAP, we assumed that the efficiencies remain relatively constant. We utilized the average effi-
ciency value measured for the range of 450 to 690 nm and applied it throughout our simulated
spectral range of 450 to 800 nm. For the DWP, we extrapolated our results for efficiencies beyond
690 nm. In Fig. S2 in the Supplementary Material, we present the experimentally determined
plots as dots for each optical component, and the corresponding dotted lines represent the simu-
lated curves.

2.4 Post-Processing of EMCCD Images

2.4.1 Spectral calibration

To calibrate the spectral dispersion of the DWP, we used a custom-made nanohole array as a
static target for spectral calibration and five bandpass filters (Table S1 in the Supplementary
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Material). The nanohole array (Fig. S3 in the Supplementary Material) was fabricated on a gold-
plated glass coverslip using a Helios Nanolab 600 Focused ion beam-scanning electron micro-
scope. To obtain the average spectral dispersion (xdisp) of each hole at different wavelengths, we
imaged the nanohole array through the 5 bandpass filters, which have center wavelengths of 532,
605, 635, 685, and 750 nm. Based on these measurements, we performed a linear fit using Eq. (4)
to determine the spectral deflection at different wavelengths of the DWP module.

2.4.2 Correcting for nonlinearity in spectral fits in the DWP module

To accurately fit the spectra obtained from the DWP module, it is crucial to consider the inherent
nonlinearity in spectral dispersion. As shown in Fig. 2(a), a hypothetical light source with a
uniform spectral power density undergoes spectral dispersion after passing through the DWP
module, resulting in non-uniform intensity across the image sensor, as shown in Fig. 2(b).
This effect is particularly noticeable in regions with lower spectral dispersion, where the incident
power is greater. Consequently, fitting a Gaussian curve to the spectrum would result in a bias
toward the longer wavelengths due to the higher intensity in the region. To account for this spec-
tral bias, we normalized the spectra with the spectral dispersion, as shown in Fig. 2(c), which
results in a corrected image with uniform intensity throughout the image sensor. This normali-
zation process corrected the nonlinear spectral dispersion in the DWP module and ensured accu-
rate spectral fitting.

2.5 Validation with Fluorescence Microspheres
To validate our MC model, we imaged microspheres with emission peaks at 560, 580, 605, 645,
and 720 nm (F8800, F8794, F8801, F8806, and T8870, Invitrogen) deposited on #1.5-thick glass
coverslips (12-541-B, Fisher Scientific). The other physical properties of these microspheres are
detailed in Table S2 in the Supplementary Material. We first washed the glass coverslips with
phosphate-buffered saline (PBS) and coated the coverslips with a 0.001% poly-L-lysine solution
for 5 min. We then washed the coverslips with PBS and stained the glass coverslips with a diluted
sample of each microsphere for 1 h. Next, we washed off the unbounded microspheres with PBS
three times and added a single drop of antifade buffer (P36961, Invitrogen). Finally, we sealed the
coverslips with black nail polish (114-8, Ted Pella) and left them overnight to dry.

We first imaged the microspheres without the DWP module to obtain the photon count of
each nanosphere and then imaged the same microspheres with the DWP module for 100 frames.
To obtain the spatial localization precision, we processed the 100 frames of microspheres using
ThunderSTORM24 and treated the standard deviation from x̂ calculated from the 100 frames as

Fig. 2 Illustration of the correction process of nonlinearity in the spectral dispersion with DWP.
(a) Illustration of the wavelength distribution of an ideal uniformly distributed spectral density light
source; (b) power density detected by the EMCCD after the DWP; and (c) corrected power density.
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the localization precision. To obtain the spectral precision, we identified a region of interest from
450 to 800 nm relative to the zeroth order image after spectral calibration using the method
previously described.5,13,22 This region of interest gives us a spectral profile similar to the one
seen in Fig. 1(f), which we use to analyze the spectral signature of the fluorophore further. Next,
we subtracted the background using averaged neighboring windows of the first order image.
Then, we performed a least-squares fit of the spectral profile with a bivariate Gaussian function
to identify the spectrum corresponding to the zeroth order blinking.

3 Results and Discussion

3.1 Validating MC Simulation with Theoretical Analyses
To validate our MC model, we first benchmarked the precisions generated from our model
against theoretical models of spatial localization precision Δx defined as11

EQ-TARGET;temp:intralink-;e005;114;580Δx2 ¼ σ2x þ a2x
12

N

 
1þ 4τ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2τ

1þ 4τ

r !
; (5)

where σx is the sigma of the PSF spot along x, ax is the pixel size, and N is the photon count. τ is

the background correction factor and is defined as τ ¼ 2πðbbgþb2roÞðσ2xþa2x
12
Þ

Na2x
, where bbg is the mean

number of background photons per pixel, bro is the standard deviation of readout noise, and the
other parameters are as defined previously. The spectral precision Δμλ is defined as12

EQ-TARGET;temp:intralink-;e006;114;479Δμ2λ ¼ F2
EM

�
σ2λ
c2N

þ 1024bbgσ3λσy
3ayaλc3N2

�
þ 1024b2roσ3λσy

3ayaλc3N2
þ a2λ

12
; (6)

where FEM is the correction factor of the EMCCD equal to
ffiffiffi
2

p
, σλ is the full-width-at-half-

maximum (FWHM) of the spectral bandwidth, c is the conversion factor between FWHM and
the standard deviation of a Gaussian function equal to 2

ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
, aλ is the spectral dispersion, and

all other parameters are as defined above.
Equation (5) describes the performance limit of the MLE when fitting the PSF into an

approximate 2D Gaussian curve, also referred to as the Cramér–Rao lower bound.11

Equation (6) assumes (1) a uniform spectral dispersion, (2) a Gaussian spectral shape with a
spectral peak of μλ and a spectral FWHM of σλ, and (3) spectral centroid in the calculation
of the spectral precision.12 The spectral centroid method takes the weighted average of the inten-
sities captured in the pixels associated with different wavelengths, yielding a weighted repre-
sentation of the spectra recorded.

To provide a fair comparison to validate our simulation, we matched the simulation based on
the assumptions of Eq. (6) listed above. We computed the spatial localization precision, defined
as the standard deviation of the localized spot from the true location, and the spectral precision,
defined as the standard deviation of the spectral centroid or the fitted spectral peak. We performed
MC simulations under the following conditions: N ¼ 700, bbg ¼ 15, spectral peak ¼ 680 nm,
and spectral FWHM ¼ 41 nm, using a linear spectral dispersion of 5 nm/px, unless otherwise
stated.

Figure 3 shows the influence of photon counts N, background photons bbg, and emission
spectral peak μλ on lateral localization and spectral precisions. In Figs. 3(a)–3(c), we compared
the theoretical localization precisions calculated with Eq. (5) with our MC simulation, with mean
absolute errors of 2.5, 0.8, and 0.3 nm relative to the theoretical values, respectively. Similarly, in
Figs. 3(d)–3(g), we compared the theoretical spectral precisions calculated with Eq. (6) with our
MC simulation using the spectral centroid method, with mean absolute errors of 2.1, 7.6, and
2.2 nm, respectively. For the spectral fitting method, the simulated precisions are consistently
better, with mean absolute errors of 6.3, 4.6, and 3.6 nm for Figs. 3(d)–3(g), respectively.

In Figs. 3(a) and 3(d), we observe that increasing the number of emitted photons from 1500
to 5000 improved the localization precision from 8.1 to 4.0 nm. Similarly, the spectral precision
improved from 4.4 to 2.0 nm with the spectral centroid method and 3.2 to 1.6 nm with the spec-
tral fitting method. With a limited photon budget, splitting the photon budget between zeroth
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order and first order images can affect the tradeoff between the localization precision and spectral
precision.

In Figs. 3(b) and 3(e), increasing background photons from 0 to 30 per pixel worsens the
localization precision from 10.6 to 15.0 nm. Similarly, spectral precision worsens from 4.4 to
13.6 nm with the spectral centroid method and from 2.7 to 4.3 nm with spectral fitting. The
spectral fitting method is more robust against noise because it estimates the background term
by fitting for and averaging over all pixels available in the spectral window, reducing the variation
in the estimated spectral peak μ̂λ. By contrast, the spectral centroid method takes the weighted
average of the spectral window, which is more susceptible to noise variations. In addition, accu-
rately estimating the background level can be challenging,28 which can result in biases to the
spectral centroid value. A positive bias can result from the presence of background contribution
to the spectral window, which can shift the spectral centroid value toward the mean of the spectral
window and reduce the spectral precision. Hence, we prefer the bivariate Gaussian fitting method
due to its robustness in estimating the spectral peak μ̂λ and calculating for spectral precisions.

In Figs. 3(c) and 3(f), we observe that, as the center wavelength of the emission peak
increases from 500 to 740 nm, the localization precision deteriorates from 9.6 to 15.0 nm.
Simultaneously, the spectral precision is stable at ∼9.2 nm with the spectral centroid method
and at 3.5 nm with the spectral fitting method. This effect is more pronounced in Fig. 3(c), where
the wider FWHM of the PSF results in improved localization precision. However, in Fig. 3(f), a
spectral emission FWHM of 47 nm plays a more significant role in determining the overall width
of the first order image with added spectral dispersion. Overall, our MC model agrees well with
the theoretical predictions, with a worse-case average absolute error of 2.5 nm for lateral pre-
cision and 2.1 nm for the spectral precision with the spectral centroid method across all cases.

3.2 MC Simulation of Different BSs
After validation, we used the MC model to predict the performance of different BSs used in the
DWP module. Figure 4 shows how photon counts N, background photons bbg, and emission
spectral peak μλ affect spatial localization and spectral precisions with different BSs. We con-
ducted MC simulations under the following conditions: N ¼ 700, bbg ¼ 15, μλ ¼ 680 nm, and
emission spectral FWHM ¼ 41 nm, and we used the DWP system with different BS ratios unless
otherwise stated.

Fig. 3 Comparison of localization precisions between theoretically predicted results (dashed line)
and simulation results (dots) with respect to (a) photon count, (b) background photons, and
(c) emission spectral peak. Comparison of spectral precisions between theoretically predicted
results (dashed lines), simulated results calculated with spectral centroids (crosses), and simu-
lated results calculated with a bivariate Gaussian fit (dots) with respect to (d) photon count,
(e) background photons, and (f) spectral peak.
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Figures 4(a)–4(d) show that using an R30:T70 BS results in a 35% worse localization pre-
cision on average compared with an R50:T50 BS. However, Figs. 4(e)–4(h) demonstrate that an
R30:T70 BS provides 8% better spectral precision on average compared with an R50:T50 BS.
This is because the R30:T70 BS redirects more of the photon budget toward the spectral channel,
which leads to lower spectral precisions, as shown in Fig. 3(d). The tradeoff between spectral and
spatial localization precisions is especially prominent in photon-limited photoswitching events
when N < 1000, as shown in Figs. 4(a) and 4(e), where we observed up to a 12.3 nm worsening
in the localization precision and up to 2.7 nm improvement in the spectral precision for N ¼ 320.
From Fig. 1(h), many photoswitching events of AF647 have N < 1000, which suggests that the
change of BS can play a significant role in optimizing the accuracy in the classification of differ-
ent fluorophores.

Increasing the number of background photons from 0 to 50 per pixel leads to an increase in
the localization and a minimal increase in the spectral precision in both BSs. In Fig. 4(b), the
localization precision worsens from 11.4 to 17.8 nm for the R50:T50 BS and from 16.1 to
24.7 nm for the R30:T70 BS. In Fig. 4(f), the spectral precision worsens slightly from 3.2
to 4.5 nm for the R50:T50 BS and from 2.9 to 4.0 nm for the R30:T70 BS. Overall, switching
from an R50:T50 BS to an R30:T70 BS led to an average worsening in the localization precision
by 5.6 nm and an improvement in the spectral precision by 0.3 nm when the number of back-
ground photons per pixel is varied.

Figure 4(c) shows that, as the spectral peak changes from 500 to 750 nm, the localization
precision worsens from 8.6 to 11.8 nm for the R50:T50 BS and from 10.9 to 16.6 nm for the R30:
T70 BS. This worsening is attributed to the change in PSF’s FWHM, as observed in Fig. 3(c).
However, Fig. 4(g) reveals a nonlinear relationship between the spectral precision and spectral
peak, unlike in Fig. 3(f), with mean values of 3.0 nm for the R50:T50 BS and 2.8 nm for the R30:
T70 BS. This nonlinearity results from the nonlinear spectral dispersion of the DWP system, as
shown in Fig. 1(k), causing spectral precision to vary based on the emission wavelength. Overall,

Fig. 4 Comparison of localization precisions between an R50:T50 (orange dots) and R30:T70
(blue squares) BS with respect to (a) photons count, (b) background photons, (c) spectral peak,
and (d) spectral FWHM. Comparison of spectral precisions between an R50:T50 (orange dots) and
R30:T70 (blue squares) BS with respect to (e) photons count, (f) background photons, (g) spectral
peak, and (h) spectral FWHM.
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switching from an R50:T50 BS to an R30:T70 BS led to an average worsening in the localization
precision of 3.5 nm, an average improvement in the spectral precision of 0.2 nm, and up to a
0.4 nm improvement in the spectral precision at a spectral peak of ∼540 nm.

Figure 4(d) shows that the localization precision remains relatively stable when the FWHM
spectral bandwidth increases from 10 to 80 nm. Figure 4(h) shows that the spectral precision
worsens from 2.3 to 6.4 nm for the R50:T50 BS and from 2.3 to 5.5 nm for the R30:T70
BS. This increase is due to the broader spread of the first order image on the EMCCD, with
results in a lower signal-to-noise ratio in the detected spectra for a fixed photon count N, and,
consequently, poorer precision. However, the localization precision remains mostly unaffected as
the PSF does not change significantly compared with the spectral shape. Overall, switching from
an R50:T50 BS to an R30:T70 BS led to an average worsening in the localization precision by
5.2 nm and an average improvement of the spectral precision by 0.4 nm.

3.3 Testing MC Simulation Against Experimental Data
Figure 5 tests our MC simulation against experimental results obtained by imaging microspheres.
The results demonstrate a good match between the MC-DWP simulation and our experimental
data for the localization precision, as shown in Figs. 5(a)–5(r), with an average absolute error of
2.7 nm for the R30:T70 BS and 1.5 nm for the R50:T50 BS. However, for the spectral precision
shown in Figs. 5(c)–5(t), we observed a slightly higher error, with an average of 0.9 nm for the
R30:T70 BS and 1.0 nm for the R50:T50 BS, compared with the simulation.

The difference in the spectral precision can be attributed to two factors: (1) spectral varia-
tions within individual microspheres and (2) imperfect background estimations in the experimen-
tal results. Although the simulation results used the bulk spectrum of the microspheres to
generate the data, the experimental results measured the spectra of individual microspheres.
At the molecular level, individual spectra are not readily available, and it is known that, when
adding two unequal Gaussian probability density functions (PDFs), the result is a PDF with a
broader width. Because the individual spectral signatures of the microspheres differ from the bulk
phase due to heterogeneity,22 their narrower widths likely collectively combine to produce a

Fig. 5 Localization and spectral precisions of different microspheres under varying numbers of
emitted photons with DWP-based sSMLM system: (a)–(r) localization precisions and (c)–(t) spec-
tral precisions. Each row shows the localization and spectral precisions of a single species of
microspheres. The BS used in each case is indicated at the top of each column.
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broader bulk phase spectral signature. As shown in Fig. 4(h), increasing the spectral FWHM by
10 nm results in ∼10% degradation in the spectral precision. The influence of spectral hetero-
geneity present in our experimental findings explains the slightly improved calculated spectral
precision in the experiments compared with the simulation results.

Furthermore, background estimation and subtraction can be challenging and biased because
the microspheres are not photoswitching. During data processing, background subtraction may
have caused some microspheres to have consistently lower spectral precisions than the simulated
values, resulting in systematic errors in the calculated spectral precision.28 Nonetheless, our
MC-DWP simulation provides a reasonable estimate of the performance of the different
nanospheres.

Finally, our analysis does not consider changing the spectral dispersion of the system
because the DWP module was designed using an optimal spectral dispersion range of 4 to
6, which minimizes the spectral uncertainty when N ranges from 1000 to 2000.12 This N range
is the photon budget available for most fluorophores commonly used in biological imaging appli-
cations. Therefore, the beamsplitting ratio and fluorophore combinations are key to maximizing
system performance. In particular applications, such as the spectroscopic analysis of dyes,22 in
which the photon budget is fixed, we may omit the BS and use the entire available photon budget
for spectroscopic analysis. In this case, the only way to tune the spectral performance of the
system is to change the spectral dispersion.

4 Conclusion
We developed a physically informedMCmodel for predicting the imaging performance of DWP-
based sSMLM systems. Our model accurately predicts both localization and spectral precisions,
as well as spectral peaks and widths in fluorescent microspheres, which provides a theoretical
foundation for optimizing the performance of multiplexed imaging. By simulating the DWP-
based system using different BSs, we found that an R30:T70 BS can reduce the spectral precision
by up to 14%, albeit with a penalty of 35% in the localization precision on average. Our work can
guide the optimization of imaging parameters for common fluorophore combinations to maxi-
mize both localization and spectral performance. Moreover, our model can generate ground-truth
data for different fluorophores, which could improve machine-learning algorithms for more accu-
rate fluorophore identification.5,29 Although there are limitations in the agreement between our
model and experimental data due to the spectral heterogeneity of individual microspheres, we are
exploring new theoretical and simulation models that can potentially describe the spectral hetero-
geneity of microspheres and fluorophores, which could further improve imaging performance
and accuracy.
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