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ABSTRACT. Significance: Multiparameter spectrophotometry (MPS) provides a powerful tool for
accurate characterization of turbid materials in applications such as analysis of
material compositions, assay of biological tissues for clinical diagnosis and food
safety monitoring.

Aim: This work is aimed at development and validation of a rapid inverse solver
based on a particle swarm optimization (PSO) algorithm to retrieve the radiative
transfer (RT) parameters of absorption coefficient, scattering coefficient and
anisotropy factor of a turbid sample.

Approach: Monte Carlo (MC) simulations were performed to obtain calculated
signals for comparison to the measured ones of diffuse reflectance, diffuse trans-
mittance and forward transmittance. An objective function has been derived and
combined with the PSO algorithm to iterate MC simulations for MPS.

Results: We have shown that the objective function can significantly reduce the
variance in calculated signals by local averaging of an inverse squared error sum
function between measured and calculated signals in RT parameter space. For val-
idation of the new objective function for PSO based inverse solver, the RT param-
eters of 20% Intralipid solutions have been determined from 520 to 1000 nm which
took about 2.7 minutes on average to complete signal measurement and inverse
calculation per wavelength.

Conclusion: The rapid solver enables MPS to be translated into easy-to-use and
cost-effective instruments without integrating sphere for material characterization by
separating and revealing compositional profiles at the molecular and particulate
scales.
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1 Introduction
Conventional spectrophotometers are probably the most commonly used type of instruments for
material analysis by determination of absorbance A or attenuation coefficient μt as a function of
wavelength λ for a given sample. For turbid materials including biological tissues, additional
optical parameters are needed to characterize molecular composition and particle sizes on scales
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close to λ by their ability to absorb and scatter light. One paradigm is to retrieve these parameters
by the radiative transfer (RT) theory,1 and its spectroscopic implementation is termed multipara-
meter spectrophotometry (MPS). The RT theory quantifies light–matter interaction
by the parameters of absorption coefficient μa and scattering coefficient μs in addition to a
single-scattering phase function pðθ;ϕÞ with θ and ϕ as the polar and azimuthal scattering
angles. MPS thus requires measurement of multiple light scattering signals to solve multiple
inverse scattering problems (ISPs) at selected values of λ that remains challenging for highly
turbid samples. To reduce complexity, pðθ;ϕÞ of an unknown sample is often modeled by
an analytical function of pHG(cosθ) proposed by Heyney and Greenstein under the assumption
of axially symmetric scattering.1–3 Alternative model functions have been studied for pðθ;ϕÞ but
pHGðcos θÞ is the preferred one with a form fully specified by an anisotropy factor g as the mean
value of cos θ. By choosing pHG as the phase function, MPS is to measure multiple light scattering
signals and determine inversely the RT parameters as function of at λ. These parameters can be
expressed as a vector of PðλÞ ¼ ðμa; μs; gÞ.

A widely used approach of MPS is to measure three signals of collimated transmittance Tc,
hemispherically integrated diffuse reflectance Rdh and transmittance Tdh with one or two inte-
grating sphere.3–11 If only one integrating sphere is used, signals need to be measured in two steps
with one for Rdh and another one for Tdh with Tc acquired in either step. To solve the ISPs, one
first derives μt (¼ μa þ μs) from Tc by the Beer-Lambert law followed with retrieval of μs and g
from Rdh and Tdh using different methods of forward modeling guided by gradient descent based
inverse solver. The modeling methods include numerically solving the RT boundary-value
problem, adding-doubling algorithm or Monte Carlo (MC) simulations. Despite its popularity
as a research tool, the need for two integrating spheres or two steps of signal measurement makes
it difficult to translate this approach into an easy-to-use instrument like a conventional spectro-
photometer. In addition, the use of integrating sphere limits severely the accessibility of the
approach to non-specialists due to time-consuming sample assembly and system maintenance.
Other approaches without integrating sphere have been investigated such as goniometric meas-
urement and detection of Tc and non-hemispherical Rd and Td at fixed angles with MC based
inverse algorithms.12,13

We have previously shown that the RT parameter vector P can be uniquely determined from
three simultaneously measured signals of non-hemispherical diffuse reflectance Rd, diffuse trans-
mittance Td and forward transmittance Tf without integrating sphere.14,15 MC simulations are
performed to accurately calculate signals as Rdc; Tdc, and Tfc and repeated to match the measured
ones. A gradient descent algorithm has been developed to guide iteration in the RT parameter
space to minimize an objective function δðPÞ defined as the sum of squared percentage
differences between the measured and calculated signals. An ISP at λ is deemed as solved with
Ps when δðPsÞ ≤ δth in which δth represents a threshold based on the experimental errors in
signal measurement. The inherent statistical variance in the calculated signals, however, makes
it difficult to accurately solve ISPs for highly turbid and optically thick samples by gradient
decent despite the existence of a unique solution.16 Specifically, sizable regions of small δ values
exist in the RT parameter space of P for these ISPs of large scattering albedo að¼ μs∕μtÞ and
optical thickness τð¼ μtDÞ with D as sample thickness. In such regions, values of δðPÞ fluctuate
considerably due to the variance of MC simulations that often lead to errors in the solution given
by Ps. To solve these challenging ISPs for highly turbid samples, one needs to either significantly
increase the number of photons in MC simulations for variance reduction or search manually by
contour analysis of δðPÞ distributions in the RT parameter space. Either way gives rise to high
computational cost and prevents rapidly solving ISPs for MPS.16 In this report, we present a rapid
inverse solver for MPS based on a particle swarm optimization (PSO) algorithm with a novel
objective function ρ1∕δðPÞ through local averaging in the space of P to determine PsðλÞ.17 The
function ρ1∕δðPÞ significantly reduces the effect of MC simulation variance in calculated signals
on inverse calculation by PSO and computation time to solve ISPs by reducing the
number of photons in MC simulations. Our validation results with 20% intralipid samples
demonstrate that PsðλÞ can be retrieved rapidly between 520 and 1000 nm by executing MC
simulations on one GPU board.
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2 Materials and Methods

2.1 Signal Measurement by MPS
An experimental system has been constructed to measure RdðλÞ, TdðλÞ, and TfðλÞ for validation
of the new inverse solver with the signal detection configuration shown in Fig. 1(a). The details of
the experimental system were previously reported.18 Briefly, a xenon light source (XL1-175-A,
WavMed Technologies Corp.) and a monochromator (CM110, CVI Corp.) are employed to
produce a monochromatic beam with λ adjustable between 520 and 1000 nm in steps of
20 nm and bandwidths around 5 nm. The beam is modulated at a frequency of f0 ¼ 370 Hz

by a mechanical chopper (SR540, Stanford Research Systems) and incident on an assembly
consisting of a turbid sample confined in a spacer ring between two glass slides. The intensity
of the incident beam I0 is monitored by a photodiode of D1 (FDS1010, Thorlabs, Inc.). Three
photodiodes (FDS100, Thorlabs, Inc.) of D2 to D4 are used to measure respectively IRd for dif-
fusely reflected, ITd for diffusely transmitted and ITf for forwardly transmitted light intensity. The
current signals of photodiodes were amplified by an in-house built four-channel lock-in amplifier
to obtain the measured signals of Rd ¼ IRd∕I0; Td ¼ ITd∕I0 and Tf ¼ ITf∕I0. Figure 1(a) shows
the detection configuration for acquisition of measured signals from the sample assembly.

2.2 Signal Calculation by iMC
An in-house developed individual photon tracking MC (iMC) code was employed to calculate sig-
nals asRdc; Tdc and Tfc from given P for a phantom of the same shape as the sample inside a spacer
between two glass slides by tracking N0 photons, which imports the parameters of sample size and
detection configuration as input data.16,19,20 The code injects each of the N0 photons incident on the
sample assembly and then tracks the photon once it transports inside a glass slide or sample until it
is either absorbed inside the sample or escapes into air. The exit location and propagation direction
of an escaping photon on a glass slide surface are used to determine if it hits a detector for detection.
A counter associated with each detector records the number of detected photons as NRd; NTd, and
NTf by the detector D2; D3, and D4, respectively. The above process repeats until the total number
of injected photons reaches N0 and the calculated signals are given by Rdc ¼ NRd∕N0,
Tdc ¼ NRd∕N0 and Tfc ¼ NTf∕N0. Because of independence in trajectory among the N0 photons,
the numbers of detected photons follow Poisson distributions.21 To estimate the variance in these
photon numbers, one can draw a random number q of Poisson distribution with fðq; qmÞ as prob-
ability mass function and qm as the mean. In the case of NRd calculated by an iMC simulation, qm
equals toN0Rdc∞ if distribution of NRd follows fðNRd; qmÞ and Rdc∞ yields the variance-free value
of Rdc by tracking “infinite” number of photons. One thus can use fðq; qmÞ to quantify the effect of
variance on calculated signals and optimize the objective function for variance reduction.

Fig. 1 (a) Configuration of signal detection with incident beam indicated by the red line: D: sample
thickness; D1: for monitoring I0; M : mirror; D2 to D4: for measurement of IRd; ITd, and ITf; θ0: angle
of incident beam from z-axis; dR; dT , and df : distance between the origin and front center of D2,
D3, and D4; and θR; θT , and θf : angle of sensor surface normal (blue dash lines) of D2, D3, and D4

from the z-axis. (b) Work-flow chart of signal measurement in brown boxes and inverse calculation
in green boxes.
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2.3 PSO Algorithm
A stochastic algorithm based on PSO has been developed to guide iMC simulations and solve for
PsðλÞ in the RT parameter space from measured signals by optimizing an objective function as
shown in Fig. 1(b). An objective function quantifies the difference between measured signals and
calculated ones obtained by given PðλÞ, and optimization of this function reduces the difference
to solve for PsðλÞ from an initial choice of PðλÞ. The PSO algorithm was chosen for its high
efficiency and ability to perform global search or avoid local traps in the RT parameter space. A
search proceeds through multiple threads in PSO, and the threads are represented by a swarm of
“particles” with index i ∈ ½1; I� and I as the number of threads or particles. Here, a particle i
symbolizes a thread of positions in the RT parameter space along which it moves from
Pði; jÞ to Pði; jþ 1Þ as22
EQ-TARGET;temp:intralink-;e001;114;604

Pði; jþ 1Þ ¼ Pði; jÞ þ vði; jþ 1Þ;
vði; jþ 1Þ ¼ χfw0vði; jÞ þ wpqðPpðiÞ − Pði; jÞÞ þ wgq 0ðPg − Pði; jÞÞg; (1)

where j ∈ ½1; J�; J is the number of iterations; v is the particle’s velocity; q and q’ are random
numbers of uniform distribution from 0 to 1; PpðiÞ is the particle-best position; Pg is the swarm-
best position; w0; wp, and wg are weights of terms contributing to vði; jþ 1Þ; and χ is a damping
constant to increase stability. A particle transits toward PpðiÞ and Pg through completed iterations
by Eq. (1) that respectively yields the best position of that particle and all particles for optimized
objective function to reduce difference between calculated and measured signals. By setting
values of wp and wg equal and large in comparison to w0 in Eq. (1), for example, enables fast
convergence of all particles from their best positions PpðiÞ towards Pg on average as j increases.
A region Γs in the RT parameter space is designated as the search space and Pði; jþ 1Þ in Eq. (1)
is set to Pði; jÞ if the former moves out of Γs. The search stops once the objective function at Pg

reaches a preset threshold or j exceeds J and current Pg is saved as PsðλÞ for output.

3 Results and Discussion

3.1 Effect of Variance in Calculated Signals on Solving ISPs
MPS requires solving one ISP for each value of λ from the measured signals. The first step is to
perform forward calculations of signals from given P ¼ ðμa; μs; gÞ by iMC simulations of light–
matter interaction in the sample. The calculated signals can be normalized by respective
measured signals and expressed as a vector of ScðPÞ ¼ ðRdcðPÞ∕Rd; TdcðPÞ∕Td; TfcðPÞ∕TfÞ.
An inverse algorithm is to iterate iMC simulations toward the objective of making ScðPÞ as close
to 1 ¼ ð1;1; 1Þ as possible. A function of squared error sum δðPÞ ¼ jScðPÞ − 1j2 is often selected
as the objective function to guide iteration and decide when stops. Ideally, δðPsÞ vanishes for a
perfect ISP solution given by Ps. In practice, one deems an ISP as solved if δðPÞ ≤ δth with δth
representing a threshold determined by the error level in signal measurement. To quantify the
effect of variance in calculated signals by a stochastic iMC simulation, we define a fluctuation
vector for calculated signals as

EQ-TARGET;temp:intralink-;e002;114;244fc ¼
�

RdcðPÞ
Rdc∞ðPÞ

− 1;
TdcðPÞ
Tdc∞ðPÞ

− 1;
TfcðPÞ
Tfc∞ðPÞ

− 1

�
; (2)

where Rdc∞, Tdc∞, and Tfc∞ are the variance-free signals calculated by tracking “infinite” num-
bers of photons. It should be noted that fc is independent of P and one can express ScðPÞ by fc

EQ-TARGET;temp:intralink-;e003;114;186ScðPÞ ¼
�
RdcðPÞ
Rd

;
TdcðPÞ
Td

;
TfcðPÞ
Tf

�
¼ Sc∞ðPÞ þ Sc∞ðPÞ ∘ fc; (3)

with Sc∞ðPÞ ¼ ðRdc∞ðPÞ∕Rd; Tdc∞ðPÞ∕Td; Tfc∞ðPÞ∕TfÞ and “o” denoting the vector form of
component-wise product. Combining these results, δðPÞ can now be written as

EQ-TARGET;temp:intralink-;e004;114;124

δðPÞ ¼
�
RdcðPÞ
Rd

− 1

�
2

þ
�
TdcðPÞ
Td

− 1

�
2

þ
�
TdcðPÞ
Td

− 1

�
2

¼ fScðPÞ − 1g · fScðPÞ − 1g

¼ δfðPÞ þ 2fc · fSc∞ðPÞ ∘ ðSc∞ðPÞ − 1Þg þ jSc∞ðPÞ ∘ fcj2; (4)
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where δfðPÞ ¼ jSc∞ðPÞ − 1j2 is the variance-free value of δðPÞ. It is clear that δfðPsÞ ¼ 0 if Ps

represents a “true” solution of ISP.

3.2 Comparison of Two Objective Functions for Variance Suppression
Based on above analysis, local averaging on δðPÞ in the RT parameter space was first employed
to suppress variance and hence increase the stability of inverse solutions. We then compared two
objective functions defined below on their abilities to further reduce the effect of variance

EQ-TARGET;temp:intralink-;e005;117;651ρδðPÞ ¼
1

mP

X
P 0∈AP

δðP 0Þ; ρ1∕δðPÞ ¼
1

mP

X
P 0∈AP

1

δðP 0Þ ; (5)

where AP is a set of mP vectors consisting of P and its neighbors on a 3D grid of P. The
components of fc as defined in Eq. (2) can be obtained as ðq∕qmÞ − 1 by drawing a random
number q independently from fðq; qmÞ and setting the qm values, related to Rdc∞; Tdc∞, and
Tfc∞, equal to focus on the effect of variance for simplicity. We further set mP ¼ 7 with P and
its nearest neighbors as the members of AP and assumed that all of them have the same value of
δfðPÞ. The values of ρδðPÞ and ρ1∕δðPÞ are plotted in Fig. 2(a) against δfðPÞ ranging from 0.1%
to 1% with a solid line representing δfðPÞ or δfðPÞ−1. These results show clearly that ρ1∕δðPÞ
fluctuates significantly less than ρδðPÞ for δfðPÞ between 0.6% and 1%, which is the typical
range of δth set by the error level of measured signals.16

To gain further insight on fluctuation in calculated signals, the relative difference Δ between
ρδðPÞ and δfðPÞ or ρ1∕δðPÞ and δfðPÞ−1 are calculated and averaged as

EQ-TARGET;temp:intralink-;e006;117;474ΔðρδÞ ¼
1

mδ

X1.1%
δf¼0.1%

���� ρδðPÞ − δfðPÞ
δfðPÞ

����; (6)

and

EQ-TARGET;temp:intralink-;e007;117;419Δðρ1∕δÞ ¼
1

mδ

X1.1%
δf¼0.1%

���� ρ1∕δðPÞ − δfðPÞ−1
δfðPÞ−1

����; (7)

where δf is uniformly sampled between 0.1% and 1.1% in each sum andmδ is the total number of
δf samples in the sums. The sampled values of δfðPÞ correspond to the mean values of each
signal term in δfðPÞ ranging from 1.8% to 6.1% since δfðPÞ is defined as the sum of squared
relative differences of calculated and measured values on three signals. Figure 2(b) illustrates the
dependence of the two Δ functions on qm values with mδ set to 1000. As discussed before,
qm represents the mean value of fðq; qmÞ which is the probability mass function of Poisson
distribution for modeling detected photon numbers, such as NRd and related calculated signal

Fig. 2 (a) The dependence of ρδðPÞ and ρ1∕δðPÞ on δf ðPÞ with red line for δf ðPÞ and blue line for
δf ðPÞ−1. (b) The mean values of relative differences ΔðρδÞ between ρδðPÞ and δf ðPÞ and Δðρ1∕δÞ
between ρ1∕δðPÞ and δf ðPÞ−1 against qm as the mean of Poisson distributions for calculated signals
by tracking “infinite” photons.
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Rdc: Therefore, the ratio of qm∕N0 equals to Rdc∞ as the variance-free value of Rdc in the above
case and larger qm corresponds to larger N0. The results in Fig. 2(b) demonstrate that use of
ρ1∕δðPÞ instead of ρδðPÞ or δðPÞ as the objective function can significantly reduce the variance
of calculated signals for the same value of N0. Alternatively, N0 can be considerably reduced for
the same variance to speed up forward calculations if ρ1∕δðPÞ is adopted. For example, computa-
tional time of iMC simulations can be cut in half with ρ1∕δðP), instead of ρδðPÞ, as the objective
function by tracking half of photons with similar variance.

3.3 Measurement of 20% Intralipid Sample
To validate the new approach, RT parameters of 20% intralipid (I141-100ML, Sigma-Aldrich)
have been determined from three measured signals of Rd; Td, and Tf for λ from 520 to 1000 nm
in steps of 20 nm. Figure 3 presents the RT parameters of a sample with thickness D ¼ 102 μm
obtained by the PSO based algorithm with ρ1∕δðPÞ selected as the objective function. Signal
measurement was repeated three times to obtain the mean values and standard deviations which
are plotted in Fig. S1 in the Supplementary Material. Previously determined values of real refrac-
tive index nrðλÞ of the 20% intralipid were used to obtain interpolated values in iMC simulations
at the wavelengths of measurement for the calculated signals and nrðλÞ is presented in Fig. S2 in
the Supplementary Material.23 The same measurements were repeated on another sample of
D ¼ 81 μm and the inversely determined RT parameters agree well with those in Fig. 3 within
the experimental errors.

The search region Γs for PSO based inverse algorithm at each wavelength was set between
1.00 × 10−4 and 2.00 mm−1 for μa, 10.0 and 200 mm−1 for μs, 0.10 and 1.00 for g. In additional
to choosing I ¼ 27 for the particle number and J ¼ 100, we set w0 ¼ 0.900, wp ¼ wg ¼ 2.05,

Fig. 3 The wavelength dependence of RT parameters of one 20% intralipid sample ofD ¼ 102 μm
in thickness. The error bars were inversely determined from different combinations of the mean
and standard deviation values of the measured signals shown in Fig. S1 in the Supplementary
Material on five selected wavelengths. The red line is a power law fitting of μs ¼ Cλ−2.340 with
C ¼ 1.626 × 108.
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and χ ¼ 0.730 for the PSO parameters defined in Eq. (1) for optimized performance of inverse
calculations. The initial positions of Pði; 1Þ for all particles were randomly distributed in each of
nine equal partitions of Γs to ensure globally optimized solutions of ISPs. We found that the
convergence toward the final solution was not affected by the choice of Pði; 1Þ under the above
condition. After calculation of ρ1∕δ with Pði; 1Þ, iterations as defined in Eq. (1) were performed in
Γs. Specifically, PpðiÞ was set as Pði; 1Þ for particle i and Pg as Ppði 0Þ that has the largest ρ1∕δ
value among all particles for j ¼ 1 to obtain vði; 2Þ and Pði; 2Þ by Eq. (1). The search then
continued as j increases to 2, 3,. . . and stopped when either ρ1∕δðPgÞ exceeds ρth for j ≤ J
or j > J with Pg saved as PsðλÞ and output together with ρ1∕δðPgÞ and δðPgÞ. The threshold
ρth corresponds to the value of ρ1∕δ in Eq. (5) with δth set to 0.8% and mP to 7.

It took about eight iterations on average to solve an ISP of PsðλÞ from the measured signals
of 20% intralipid sample. The total numbers of iMC simulations were found to be about 800 for
solving each ISP if 27 particles were employed in PSO based search. Signal were calculated by
iMC simulations in whichN0 was gradually increased from 5 × 105 to 5 × 106 as δ became 1% or
less. On average, over different values of RT parameters and N0, each iMC simulation took about
0.2 s and solving PsðλÞ per wavelength took about 160 s by executing the code on one GPU board
(Nvidia, GeForce RTX 2080 Ti). The results of PsðλÞ in Fig. 3 compare similarly to those
obtained by methods using integrating sphere.8,24 For example, both of the range and wavelength
dependence of μs and g agree well with those in Ref. 8 for the 20% intralipid sample while the
range of μa is between those of Ref. 24 for 10% intralipid and Ref. 8. Since the 20% intralipid is
high turbid with scattering albedo a ¼ μs∕μt > 98% over the measured wavelengths, the large
differences in the values of μa can be attributed to the very large errors in determining μa with
values smaller than μs by three orders of magnitude as previously discussed.8 We note further that
the values of optical thickness τ and albedo a of the intralipid sample reach the maximum values
of 7.1 and 99.98%, respectively for λ ¼ 520 nm. Results of our study on samples of 20% intra-
lipid with sufficiently large D values showed that current MPS method with the inverse solver
reported here can yield unstable solutions of Ps when the value of τ becomes larger than 7.1 for
very large values of a above 99.9990%. A detailed comparison of the measured and calculated
signals and analysis of background noise in signal measurement suggests that the instability of
inverse solution is mainly caused by the variance in calculated signals, which may be mitigated
without using N0 much larger than those used for ISPs of τ ≤ 7.1 for iMC simulations. A study is
underway to further improve the PSO based inverse solver by taking into account the δðPÞ dis-
tribution obtained from completed iterations, which is expected to enable accurate measurement
of RT parameters for highly turbid samples with τ up to 15 without significant increase of com-
putational cost. Such an improvement can make the approach of MPS concerned here capable of
characterizing optically thick samples by their RT parameters for which the conventional
approach with integrating sphere fails for inability to accurately measure collimated transmit-
tance Tc.

4 Conclusions
We have analyzed the effect of variance by MC simulations on solving ISPs and proposed a novel
objective function to reduce variance in calculated signals and speed up simulations.
Combination of the objective function with the PSO algorithm leads to a rapid inverse solver
for determination of RT parameters of turbid samples from three measured signals without inte-
grating sphere. The inverse solver has been validated by the results of RT parameter retrieval on
samples of 20% intralipid in a wavelength range of 520 to 1000 nm with ISPs solved rapidly
using one GPU board. Taken together, we have demonstrated a new approach of MPS, which
allows its translation into a powerful and easy-to-use instrument for clear separation and char-
acterization of molecular composition and turbidity.
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