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Abstract. We propose a deep learning network L1-2D2PCANet for face recognition, which is based on
L1-norm-based two-dimensional principal component analysis (L1-2DPCA). In our network, the role of L1-
2DPCA is to learn the filters of multiple convolution layers. After the convolution layers, we deploy binary hashing
and blockwise histogram for pooling. We test our network on some benchmark facial datasets, including Yale,
AR face database, extended Yale B, labeled faces in the wild-aligned, and Face Recognition Technology
database with the convolution neural network, PCANet, 2DPCANet, and L1-PCANet as comparison. The results
show that the recognition performance of L1-2D2PCANet in all tests is better than baseline networks, especially
when there are outliers in the test data. Owing to the L1-norm, L1-2D2PCANet is robust to outliers and changes
of the training images. © 2019 SPIE and IS&T [DOI: 10.1117/1.JEI.28.2.023016]
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1 Introduction
In pattern recognition and computer vision, face recognition
is a very important research field.1–6 Due to the complexity
of facial features and the difficulty of manual feature
selection,1,5,6 it is commonly agreed that the best features
can be obtained by using unsupervised feature extraction
methods.3–5

Recently, with Google Alpha Go Zero defeating many Go
masters, deep learning has received intensive attentions.7,8

As a classical deep learning model, convolution neural net-
works (CNNs) with convolution and pooling layers have
achieved astonishing results in many image recognition tasks,
reaching an unprecedented accuracy.9,10 However, CNN still
has many shortcomings. During the process of training a
CNN model, researchers need to obtain a huge number of
parameters, which leads to high computational cost.11

To solve this problem, researchers are committed to finding
a simple CNN model that requires a small number of param-
eters. Chan et al.12 proposed PCANet, which is a simple deep
learning network based on unsupervised learning. PCANet
uses PCA to learn the filters and deploys simple binary hashing
and block histogram for indexing and pooling. Unlike other
CNNs that learn filters by backpropagation, PCANet learns
filters using the PCA method. Thus, PCANet requires less
computational cost, less time, and storage space. The exper-
imental results show the astonishing performance of PCANet.

The PCA method used by PCANet is based on one-
dimensional (1-D) vectors. Before deploying PCA, we need
to convert two-dimensional (2-D) image matrices into 1-D
vectors, which will cause two major problems: (1) Some
spatial information of image is implied in the 2-D structure
of the image.13,14 Obviously, the intrinsic information is
discarded when the image matrix is converted into 1-D
vector.13,15 (2) The long 1-D vector leads to the requirement
of large computational time and storage space in computing
the eigenvectors. To solve these problems, Yu et al.16 proposed
2-D principal component analysis network (2DPCANet),

which replaces PCA with 2DPCA.15,17–19 And Tian et al.20

proposed multiple scales principal component analysis net-
work (MS-PCANet).

However, both PCA and 2DPCA are based on L2-norm
method. It is well known that the methods based on L2-norm
are sensitive to outliers so that data with outliers can totally
ruin the results from the desired methods.5,21,22 To solve
this problem, Kwak23 proposed a PCA method based on
L1-norm. L1-norm is widely considered to be more robust
to outliers.21,24 L1-PCA adopts the L1-norm for measuring
the reconstruction error. On this basis, Xuelong et al.14 pro-
posed L1-norm-based 2DPCA.

In this paper, L1-norm was introduced into PCANet
to get L1-PCANet. Then, we generalize L1-PCANet to
L1-2D2PCANet, which shares the same structure with
2DPCANet to generate the feature of input data but
L1-2D2PCANet learns filters by L1-2DPCA. In addition,
we use support vector machine (SVM) as classifiers for
the features generated by the networks. To test the perfor-
mance of L1-2D2PCANet, we compare it with other three
networks (PCANet, 2DPCANet, and L1-PCANet) on Yale,
AR,25 extended Yale B,26 labeled faces in the wild-aligned
(LFW-a),27 and Face Recognition Technology database
(FERET)28 face databases.

The rest of paper is organized as follows. Sections 2.1
and 2.2 review related work on L1-PCA and L1-2DPCA.
L1-PCANet and L1-2D2PCANet are given in Sec. 2.3.
Section 3 reports the detail of experiments. Section 4 reports
the results and the analysis of the experiments and Sec. 5
concludes this paper.

2 Materials and Methods

2.1 L1-Norm-Based PCA
The proposed L1-PCANet is based on L1-PCA.21,23 L1-PCA
is considered as the simplest and most efficient among
many models of L1-norm-based PCA. Let X ¼ ½x1; x2; : : : ;
xN � ∈ RD×N , with xi ¼ matDðIiÞ ∈ RD×1ði ¼ 1;2; : : : ; NÞ.
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The matDðIÞ is a function that maps a matrix I ∈ Rm×n to a
vector v ∈ RD×1 and D ¼ m × n. Suppose w ∈ RD×1 be the
principal vector to be obtained. Here, we set the number
of principal vectors to one to simplify the procedure. The
objective of L1-PCA is to maximize the L1-norm variance
in the feature space and the successive greedy solutions are
expected to provide a good approximation as the following:

EQ-TARGET;temp:intralink-;e001;63;455fðwÞ ¼ kwTXk1 ¼
XN
i¼1

jwTxij; subject to kwk2 ¼ 1; (1)

where k · k denotes L2-norm and j ·j denotes L1-norm.
To solve the computational problems posed by the symbol

of absolute value, we introduce a polarity parameter pi in
Eq. (1):

EQ-TARGET;temp:intralink-;e002;63;363pi ¼
�
1; whenwTxi ≥ 0

−1; when wTxi < 0
: (2)

By introducing pi, Eq. (1) can be rewritten as follows:

EQ-TARGET;temp:intralink-;e003;63;309fðwÞ ¼
XN
i¼1

piwTxi: (3)

The process of maximization is achieved by Algorithm 1.
Here, t denotes the number of iterations and wðtÞ and piðtÞ
denote w and pi during iteration t.

By the above algorithm, we can obtain the first principal
vector w�

1. To compute w�
kðk > 1Þ, we have to update the

training data as follows:

EQ-TARGET;temp:intralink-;e004;63;197xki ¼ xk−1i − xk−1i ðw�
k−1w

�T
k−1Þ: (4)

2.2 L1-Norm-Based 2DPCA
In this section, we extend L1-PCA to L1-2DPCA.14 As
mentioned above, 2DPCA computes eigenvectors with 2-D
input. Suppose Iiði ¼ 1;2; : : : ; NÞ denote N input training
images and D ¼ m × n being the image size. Let w ∈ Rw×1

be the first principal component to be learned. Let X ¼
½x1; x2; : : : ; xN � ∈ RD×N , with xi ¼ ½xi1; xi2; : : : ; xih�T ∈
Rh×wði ¼ 1; 2; : : : ; NÞ. Note, xij ∈ R1×w The objective of

L1-PCA is to maximize the L1-norm variance in feature
space as follows:

EQ-TARGET;temp:intralink-;e005;326;498fðwÞ ¼ kXwk1 ¼
XN
i¼1

Xh
j¼1

jxijwj; subject to kwk2 ¼ 1:

(5)

The polarity parameter pij can be computed as follows:

EQ-TARGET;temp:intralink-;e006;326;422pij ¼
�
1; when xijw ≥ 0

−1; when xijw < 0
: (6)

The process of maximization is achieved by Algorithm 2.
To compute w�

kðk > 1Þ, we have to update the training data
as follows:

EQ-TARGET;temp:intralink-;e007;326;344xkij ¼ xk−1ij − xk−1ij ðw�
k−1w

�T
k−1Þ: (7)

At this point, we can find that the difference between
L1-PCA and L1-2DPCA is that L1-PCA converts an image
matrix into a vector, however, L1-2DPCA directly uses each
row in the original image matrix as a vector.

2.3 Proposed Method
2.3.1 L1-PCANet

In this section, we propose a PCA-based deep learning net-
work, L1-PCANet. To overcome the sensitivity to outliers in
PCANet due to the use of L2-norm, we use the L1-PCA
rather than the PCA to learn the filters. L1-PCANet and
PCANet12 share the same network architecture, which is
shown in Fig. 1.

Suppose there areN training images Iiði ¼ 1;2; : : : ; NÞ of
size m × n, and we get D ¼ m × n patches of size k × k
around each pixel in Ii. Then, we take all overlapping
patches and map them into vectors:

EQ-TARGET;temp:intralink-;e008;326;116½xi;1; xi;2; : : : ; xi;mn� ∈ Rk2×mn: (8)

And we remove the patch mean from each patch and
obtain as follows:

Algorithm 1 L1-PCA method.

Input:

• training set: X ¼ ½x1; x2; : : : ; xN � ∈ RD×N

Output:

• filters w�

1: set wð0Þ ¼ 0 and t ¼ 0

2: For all i ∈ f1;2; : : : ; Ng, calculate pi ðtÞ by using Eq. (2)

3: Let t ¼ tþ 1 and wðtÞ ¼ PN
i¼1 pi ðt − 1Þx i . Then let

wðtÞ ¼ wðtÞ∕kwðtÞk2
4: If wðtÞ ≠ wðt − 1Þ, go back to Step 2. Otherwise, set w� ¼ wðtÞ and

stop.

Algorithm 2 L1-2DPCA method.

Input:

• training set: X ¼ ½x1; x2; : : : ; xN � ∈ RD×N

Output:

•filters w�

1: Set wð0Þ ¼ 0 and t ¼ 0

2: For all i ∈ f1;2; : : : ; Ng and j ∈ f1;2; : : : ; hg, calculate pij ðtÞ by
using Eq. (6).

3: Let t ¼ tþ 1 and wðtÞ ¼ PN
i¼1

Ph
j¼1 pij ðt − 1Þxij . Then we initialize

wðtÞ ¼ wðtÞ∕kwðtÞk2
4: If wðtÞ ≠ wðt − 1Þ, go back to Step 2. Otherwise, set w� ¼ wðtÞ and

stop.
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EQ-TARGET;temp:intralink-;e009;63;568X̄ ¼ ½x̄i;1; x̄i;2; : : : ; x̄i;mn� ∈ Rk2×mn: (9)

For all input images, we construct the same matrix and
combine them into one matrix to obtain as follows:

EQ-TARGET;temp:intralink-;e010;63;522X ¼ ½X̄1; X̄2; : : : ; X̄N � ∈ Rk2×Nmn: (10)

Then, we use L1-PCAmentioned above to learn the filters
in stage 1. The filter we want to find is w ∈ Rk2×1. We take X
as the input data of L1-PCA. Assuming that the number of
filters in stage 1 is L1, we can obtain the first stage filters
fw�

1; : : : ;w
�
L1
g by repeatedly calling Algorithm 1. The L1-

PCA filters of stage 1 are expressed as follows:

EQ-TARGET;temp:intralink-;e011;63;423W1
p ¼ matk;kðw�

pÞ ∈ Rk×k; (11)

where p ¼ 1;2; : : : ; L1.
The output of stage 1 can expressed as follows:

EQ-TARGET;temp:intralink-;e012;63;368Op
i ¼ Ii �W1

p; i ¼ 1;2; : : : ; N; (12)

where � denotes 2-D convolution. We set the boundary of
the input image to zero-padding to make sure that Op

i is
of the same size as Ii. We can get the filters of the second
and subsequent layers by simply repeating the process of
the first layer design. The pooling layer of L1-PCANet is
almost the same as the pooling layer of L1-2D2PCANet.

2.3.2 L1-2D2PCANet

In this section, we generalize L1-PCANet to
L1-2D2PCANet, which shares the same network with
2DPCANet,16 as shown in Fig. 2.

First stage of L1-2D2PCANet. Let all the assumptions be
the same as in Section III. We get all the overlapping patches:

EQ-TARGET;temp:intralink-;e013;326;487xi;j ∈ Rk×k; j ¼ 1;2; : : : ; mn; (13)

and subtract the patch mean from each of them and we form
a matrix:

EQ-TARGET;temp:intralink-;e014;326;432X̄x;i ¼ ½x̄i;1; x̄i;2; : : : ; x̄i;mn� ∈ Rk×kmn: (14)

And we use the transpose of xi;j to form matrix:

EQ-TARGET;temp:intralink-;e015;326;389X̄y;i ¼ ½x̄Ti;1; x̄Ti;2; : : : ; x̄Ti;mn� ∈ Rk×kmn: (15)

For all input images, we construct the matrix by the same
way and put them into one matrix, we can obtain as follows:

EQ-TARGET;temp:intralink-;e016;326;334Xx ¼ ½X̄x;1; X̄x;2; : : : ; X̄x;N � ∈ Rk×Nkmn; (16)

EQ-TARGET;temp:intralink-;e017;326;291Xy ¼ ½X̄y;1; X̄y;2; : : : ; X̄y;N � ∈ Rk×Nkmn: (17)

Then, we use L1-2DPCA mentioned above to learn the
filters in stage 1. We want to obtain filters w�

x;p ∈ Rk×1

INPUT

FIRST STAGE

SECOND STAGE OUTPUT

PATCH
MEAN

REMOVE

PATCH
VECTORIZE

CONV
LAYER 1

PATCH
MEAN

REMOVE

PATCH
VECTORIZE

CONV
LAYER 2

BINARY
HASHING

HISTOGRAM

Fig. 1 The illustration of two-layer L1-PCANet.
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Fig. 2 The illustration of two-layer L1-2D2PCANet.
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and w�
y;p ∈ Rk×1, where p ¼ 1;2; : : : ; L1. Xx and Xy are the

input data for L1-2DPCA. Assuming that the number of
filters in stage 1 is L1, the first stage filters fw�

x;1; : : : ;w
�
x;L1

g
and fw�

y;1; : : : ;w
�
y;L1

g are obtained by repeatedly calling
Algorithm 2.

The filters we need in stage 1 can finally be expressed as
follows:

EQ-TARGET;temp:intralink-;e018;63;671W1
p ¼ w�

x;p × w�T
y;p ∈ Rk×k: (18)

The output of stage 1 will be

EQ-TARGET;temp:intralink-;e019;63;627Op
i ¼ Ii �W1

p; i ¼ 1;2; : : : ; N: (19)

Second stage of L1-2D2PCANet. Like in the first stage,
we can start with the overlapping patches of Op

i and remove
the patch mean from each patch. Then, we have

EQ-TARGET;temp:intralink-;e020;63;553Yp
x;i ¼ ½ȳi;p;1; : : : ; ȳi;p;mn� ∈ Rk×kmn; (20)

EQ-TARGET;temp:intralink-;e021;63;509Yp
y;i ¼ ½ȳTi;p;1; : : : ; ȳTi;p;mn� ∈ Rk×kmn: (21)

Further, we define the matrix that collects all the patches
without the patch mean of the k’th output Ok

i being removed
as

EQ-TARGET;temp:intralink-;e022;63;464Yp
x ¼ ½Ym

x;1; Y
m
x;2; : : : ; Y

m
x;N � ∈ Rk×Nkmn; (22)

EQ-TARGET;temp:intralink-;e023;63;420Yp
y ¼ ½Yp

y;1; Y
p
y;2; : : : ; Y

p
y;N � ∈ Rk×Nkmn: (23)

Finally, the input of the second stage is obtained by
concatenating Yp

x and Yp
y for all L1 filters:

EQ-TARGET;temp:intralink-;e024;63;385Yx ¼ ½Y1
x; Y2

x; : : : ; Y
L1
x � ∈ Rk×L1Nkmn; (24)

EQ-TARGET;temp:intralink-;e025;63;341Yy ¼ ½Y1
y; Y2

y; : : : ; Y
L1
y � ∈ Rk×L1Nkmn: (25)

We take Yx and Yy as the input data of L1-2DPCA.
Assuming that the number of filters in stage 2 is L2,
we design the second stage filters fw�

x;1; : : : ;w
�
x;L2

g and
fw�

y;1; : : : ;w
�
y;L2

g by repeatedly calling Algorithm 2. The
L1-2DPCA filters of stage 2 are expressed as follows:

EQ-TARGET;temp:intralink-;e026;63;270W2
q ¼ w�

x;q × w�T
y;q ∈ Rk×k; (26)

where q ¼ 1;2; : : : ; L2.
Therefore, we have L2 outputs for each output Op

i of
stage 1:

EQ-TARGET;temp:intralink-;e027;63;204Bq
i ¼ fOp

i �W2
qg; l ¼ 1;2; : : : ; L2: (27)

Note that the number of outputs of stage 2 is L1L2.

Pooling stage. First, we use a Heaviside-like step function
to binarize the output of stage 2. The function Hð·Þ can be
expressed as follows:

EQ-TARGET;temp:intralink-;e028;63;116HðxÞ ¼
�
0; x < 0

1; x ≥ 0
: (28)

Each pixel is encoded by the following function:

EQ-TARGET;temp:intralink-;e029;326;741Tm
i ¼

XL2

l

2l−1HðBq
i Þ; (29)

where Tm
i is an integer of range ½0; 2L2−1�.

Second, we divide Tm
i into B blocks. Then, we make

a histogram of all blocks of Tm
i with 2L2 values and concat-

enate all the histogram of B blocks into one vector histðTm
i Þ.

In this way, we obtain L1 histograms and we put them into
a vector:

EQ-TARGET;temp:intralink-;e030;326;624fi ¼ ½histðT1
i Þ; : : : ; histðTL2

i Þ� ∈ R2L2L1B×1: (30)

Using the L1-2DPCA model described above, we can
transform an input image into a feature vector as the output
of L1-2D2PCANet.

3 Experiments
In this section, we evaluate the performance of L1-PCANet
and L1-2D2PCANet with PCANet and 2DPCANet as
baselines on Yale, AR, extended Yale B, and FERET
databases, respectively, which are shown in Fig. 3. SVM29

implementation from the libsvm is used as the classifier
with default settings. We repeat some experiments 10 times
and calculate the average recognition accuracy and root
mean square error (RMSE). In all experiments, we create all
PCANet and its different variations instances on MATLAB
and other CNNs on Tensorflow.

3.1 Extended Yale B
Extended Yale B consists of 2414 images of 38 individuals
captured with different lighting conditions. These pictures
are preprocessed to have the same size 48 × 42 and align-
ment. The parameters are set as k ¼ 5, B ¼ 3, L1 ¼ L2 ¼ 4.

In experiment 1, we compare L1-PCANet and L1-
2D2PCANet with PCANet and 2DPCANet. We randomly
select i ¼ 2;3; 4;5; 6;7 images per individual for training
and use the rest for testing. We also create AlexNet30 and
GoogleNet11 instances for comparison, which are trained on
1024 images randomly selected from extended Yale B for
20 epochs. The architecture of AlexNet is the same as in
Ref. 30 and the architecture of GoogleNet is the same as
in Ref. 11. The parameters of two CNNs are set as
learning rate¼ 0.0001, batch size¼ 128, drop keep prob:¼
0.8. The results are shown in Table 1.

In experiment 2, to evaluate the robustness of L1-PCANet
and L1-2D2PCANet to outliers, we randomly add blockwise
noise to the test images to generate test images with outliers.
Within each block, the pixel value is randomly set to be 0 or
255. These blocks occupy 10%, 20%, 30%, and 50% of the
images and they are added to the random position of the
image, respectively, which can be seen in Fig. 4. The results
are shown in Table 2.

To demonstrate the superiority of the proposed method,
we compare L1-PCANet and L1-2D2PCANet with the
traditional L1-PCA and L1-2DPCA in experiment 3. We cre-
ate L1-PCA and L1-2DPCA instances based on Refs. 23 and
24. The parameters of L1-PCA and L1-2DPCA are set as
w ¼ 100. We randomly select i ¼ 2;3; 4;5; 6;7 images per
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individual for gallery images and seven images per individ-
ual for training. The results are shown in Table 3.

In experiment 4, we examine the impact of the block
size B for L1-PCANet and L1-2D2PCANet. The block
size changes from 2 × 2 to 8 × 8. The results are shown in
Fig. 5(a).

3.2 AR
AR face database contains 2600 color images corresponding
to 100 people’s faces (50 men and 50 women). It has two
session data from two different days and each person in each
session has 13 images, including 7 images with only illumi-
nation and expression change, 3 images wearing sunglasses,

Fig. 3 Images in three datasets. Top line: Extended Yale B,26 middle line: AR,25 bottom line: FERET.28

Table 1 Experiment 1 on extended Yale B.26

2 3 4 5 6 7

AlexNet 85.56� 0.53

GoogleNet 95.18� 0.42

PCANet 83.41� 5.31 84.51� 5.70 84.42� 5.37 82.48� 7.18 84.06� 6.22 89.56� 5.48

2DPCANet 97.48� 1.03 97.34� 1.81 97.01� 1.64 96.71� 2.48 95.16� 2.93 97.22� 2.02

L1-PCANet 97.88� 0.22 97.98� 0.22 97.88� 0.18 97.86� 0.17 97.94� 0.19 97.90� 0.16

L1-2D2PCANet 99.67� 0.09 99.71� 0.07 99.73� 0.09 99.73� 0.06 99.75� 0.06 99.77� 0.07

(a)  (b) (c) (d)

Fig. 4 Some generalized face images with outliers of extended Yale B:26 (a) 10%; (b) 20%; (c) 30%; and
(d) 50%.
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and 3 images wearing scarf. Images show frontal faces with
different facial expressions, illumination conditions, and
occlusions (sunglasses and scarf). These pictures are prepro-
cessed to 40 × 30. The parameters are set as k ¼ 5, B ¼ 4,
L1 ¼ L2 ¼ 4, respectively.

In experiment 5, in order to investigate the impact of the
choice of training images, we divide the experiment into four
groups: (1) In group 1, we randomly select five images with
only illumination and expression change from session 1 per
individual as training images; (2) in group 2, we randomly
select four images with only illumination and expression
change and one image wearing sunglasses from session 1
per individual as training images; (3) in group 3, we ran-
domly select four images with only illumination and expres-
sion change and one image wearing scarf from session 1 per
individual as training images. The remaining images are test
samples; and (4) in group 4, we randomly select three images
with only illumination and expression change, one image

wearing sunglasses and one image wearing scarf from
session 1 per individual as training images. The remaining
images in session 1 and all images in session 2 are used
as test images. We manually select five images from session
1 as the gallery images and keep gallery images of each
group the same. The results are shown in Table 4.

In order to investigate the impact of the choice of gallery
images, experiment 6 is the same as experiment 5 except that
the gallery images and the training images are exchanged.
We use the remaining images in session 1 and all images
in session 2 as test samples. The results are shown in Table 5.

3.3 FERET
This database contains a total of 11338 facial images. They
were collected by photographing 994 subjects at various
facial angles. We gathered a subset from FERET, which is
composed by 1400 images recording of 200 individuals,
with each seven images exhibit large variations in facial

Table 3 Experiment 3 on extended Yale B.26

2 3 4 5 6 7

L1-PCA 22.10� 1.69 32.68� 1.66 43.23� 2.00 52.78� 1.70 59.23� 2.11 64.49� 1.42

L1-2DPCA 35.72� 2.50 43.26� 1.92 51.72� 2.12 60.75� 1.42 65.44� 1.88 70.60� 1.56

L1-PCANet 60.83� 3.81 74.72� 2.07 83.13� 1.84 87.90� 1.23 91.75� 1.62 94.37� 1.04

L1-2D2PCANet 76.23� 3.48 85.20� 2.04 90.65� 1.65 93.52� 1.10 95.62� 1.14 96.86� 0.77
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Fig. 5 Recognition rate of L1-PCANet and L1-2D2PCANet on extended Yale B and FERET dataset for
varying number of block size. (a) Extended Yale B and (b) FERET.

Table 2 Experiment 2 on extended Yale B.26

10% 20% 30% 50%

PCANet 92.68� 0.42 88.51� 0.40 74.63� 0.48 44.10� 0.76

2DPCANet 94.26� 0.25 88.71� 0.57 79.54� 0.89 55.34� 0.70

L1-PCANet 94.34� 0.40 91.50� 0.51 83.58� 0.60 65.01� 0.61

L1-2D2PCANet 99.00� 0.15 98.28� 0.18 95.73� 0.20 84.01� 0.74
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expression, facial angle, and illumination. This subset is
available in our GitHub repository. These pictures are pre-
processed to have the same size 40 × 40 and alignment.
The parameters are set as k ¼ 5, B ¼ 10, L1 ¼ L2 ¼ 4,
respectively.

In experiment 7, we divide the experiment into seven
groups. The training images of each group consist of
200 images from the subset with different facial angle,
expression, and illumination. We use the remaining images
in the subset as test images. The results are shown in
Table 6.

In experiment 8, we examine the impact of the block size
B for L1-PCANet and L1-2D2PCANet. The block size

changes from 2 × 2 to 10 × 10. The results are shown in
Fig. 5(b).

3.4 Yale
Yale consists of 15 individuals and 11 images for each indi-
vidual, which shows varying facial expressions and configu-
rations. These pictures are preprocessed to have the same
size 32 × 32. The parameters are set as k ¼ 5, B ¼ 4,
L1 ¼ L2 ¼ 4, respectively.

In experiment 9, we randomly select i ¼ 2;3; 4;5; 6;7
images per individual for training and use the rest for testing.
The results are shown in Table 7.

Table 4 Experiment 5 on AR.25

No occlusion Sunglass Scarf Sunglass and scarf

PCANet 78.63� 3.09 78.74� 4.84 79.23� 4.47 80.40� 4.10

2DPCANet 82.94� 4.31 83.85� 4.48 82.21� 2.97 83.44� 4.27

L1-PCANet 87.09� 0.50 86.73� 0.31 87.33� 0.12 86.46� 0.22

L1-2D2PCANet 89.26� 0.37 88.59� 0.27 88.85� 0.28 88.52� 0.19

Table 5 Experiment 6 on AR.25

No occlusion Sunglass Scarf Sunglass and scarf

PCANet 66.71� 0.87 69.62� 0.69 69.59� 0.69 72.66� 0.70

2DPCANet 69.24� 0.70 74.78� 0.70 72.14� 0.99 75.51� 0.61

L1-PCANet 68.56� 0.65 75.23� 0.60 72.35� 0.77 79.34� 0.71

L1-2D2PCANet 77.08� 0.64 81.10� 0.37 78.34� 0.61 84.17� 0.75

Table 6 Experiment 7 on FERET.28

1 2 3 4 5 6 7 Average RMSE

PCANet 75.83 76.83 76.17 68.00 73.67 69.83 79.11 74.21 3.69

2DPCANet 73.17 76.17 76.17 73.67 78.33 73.50 74.00 75.00 1.78

L1-PCANet 82.83 82.17 82.00 82.50 85.00 82.50 81.83 82.69 0.99

L1-2D2PCANet 86.00 84.83 85.50 86.50 87.33 86.83 86.83 86.26 0.81

Table 7 Experiment 9 on Yale.26

2 3 4 5 6 7

PCANet 86.33� 1.87 86.75� 2.37 87.50� 1.58 87.25� 2.12 87.25� 2.14 87.29� 2.22

2DPCANet 91.33� 2.80 91.78� 1.94 90.44� 2.59 90.67� 2.34 90.87� 2.90 91.93� 2.13

L1-PCANet 91.45� 0.89 92.00� 0.83 91.22� 0.54 91.00� 0.44 91.89� 0.51 92.67� 0.33

L1-2D2PCANet 94.03� 0.32 95.10� 0.41 94.95� 0.33 95.25� 0.32 95.16� 0.41 95.66� 0.40
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3.5 LFW-a
LFW-a is a version of LFW after alignment with deep
funneling. We gathered the individuals, including more than
nine images from LFW-a. The parameters are set as k ¼ 5,
B ¼ 3, L1 ¼ L2 ¼ 4, respectively.

In experiment 10, we randomly choose i ¼ 3;4; 5;6; 7
images per individual for gallery images and keep training
images of each group the same. The results are shown in
Table 8.

4 Results and Analysis
Tables 1 and 3 show the results of experiments 1 and 3 on
extended Yale B, Table 4 shows the result of experiment 5 on
AR, Table 6 shows the result of experiment 7 on FERET,
Table 7 shows the result on Yale, and Table 8 shows the result
on LFW-a.

In these experiments, we changed the training images
by random selection. From the results, we can see that
the L1-2D2PCANet outperforms L1-PCA, L1-2DPCA,
PCANet, 2DPCANet, and L1-PCANet in terms of recogni-
tion accuracy and RMSE, because we introduce L1-norm
into the network. The two L1-norm-based networks we
proposed are far superior to the traditional L2-norm-based
networks in terms of RMSE, which means the proposed
networks are insensitive to changes in training images.
That is, the accuracy of the traditional L2-norm-based net-
works largely depends on the choice of training images while
the L1-norm-based networks we proposed can achieve better
and stable accuracy under any training images. A possible
explanation of this phenomenon is as follows. In fact, the
expression, posture, illumination condition, and occlusion in
the images can be regarded as interference or noise in face
recognition. This noise degrades L2-norm-based networks
much more than it degrades L1-norm-based networks.
Therefore, the proposed networks exhibit the superiority
when the training images contain some changes in expres-
sion, posture, illumination condition, and occlusion.

Table 2 shows the result of experiment 2 on extended
Yale B. In this experiment, we randomly add blockwise
noise to the test images. From the results, we can see that
as the blockwise noise increases from 10% of the image
size to 50%, the performance of PCANet, 2DPCANet, and
L1-PCANet drops rapidly while L1-2D2PCANet still has
good performance. Therefore, it can be considered that
L1-2D2PCANet has better robustness against outlier and
noise than other three networks.

We also investigate the impact of the choice of gallery
images on AR; see Table 4. From the horizontal comparison

of Table 5, the more categories the gallery contains, the
higher the accuracy is.

Figure 5 shows the result of experiment 4 on extended
Yale B and experiment 8 on FERET. When the block is
small, the local information cannot be contained perfectly,
and it may get more noise when the block is big.

5 Conclusion
In this paper, we have proposed a deep learning network
L1-2D2PCANet, which is a simple but robust method.
We use the L1-norm-based 2DPCA14 instead of L2-norm-
based 2DPCA15 for the filter learning because of the advan-
tages of L1-norm. It is more robust to outliers than L2-norm.
By introducing L1-norm into 2DPCANet,16 we hope the
network will inherit such advantages.

To verify the performance of L1-2D2PCANet, we evalu-
ate them on the facial datasets, including AR, extended
Yale B, Yale, and FERET, respectively. The results show
that L1-2D2PCANet has three distinct advantages over
traditional L2-norm-based networks: (1) Statistically, the
accuracy of L1-2D2PCANet is higher than that of other net-
works on all test datasets. (2) L1-2D2PCANet has better
robustness to changes in training images compared with
the other networks. (3) Compared with the other networks,
L1-2D2PCANet has better robustness to noise and outliers.
Therefore, L1-2D2PCANet is an efficient and robust network
for face recognition.

However, L1-2DPCA brings more computational load
to the network, which increases the computational cost of
L1-2D2PCANet. Despite this, the computational cost of
L1-2D2PCANet is far less than those traditional CNNs,
which are based on backpropagation.

In the future work, we will work on the improving of
L1-2DPCA algorithm to solve the problem of the computa-
tional cost of L1-2D2PCANet.
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