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Abstract

Purpose: Accurate segmentation of the pancreas using abdominal computed tomography (CT)
scans is a prerequisite for a computer-aided diagnosis system to detect pathologies and perform
quantitative assessment of pancreatic disorders. Manual outlining of the pancreas is tedious,
time-consuming, and prone to subjective errors, and thus clearly not a viable solution for large
datasets.

Approach: We introduce a multiphase morphology-guided deep learning framework for effi-
cient three-dimensional segmentation of the pancreas in CT images. The methodology works by
localizing the pancreas using a modified visual geometry group-19 architecture, which is a 19-
layer convolutional neural network model that helped reduce the region of interest for more
efficient computation and removed most of the peripheral structures from consideration during
the segmentation process. Subsequently, soft labels for segmentation of the pancreas in the local-
ized region were generated using the U-net model. Finally, the model integrates the morphology
prior of the pancreas to update soft labels and perform segmentation. The morphology prior is a
single three-dimensional matrix, defined over the general shape and size of the pancreases from
multiple CT abdominal images, that helps improve segmentation of the pancreas.

Results: The system was trained and tested on the National Institutes of Health dataset (82 CT
scans of the healthy pancreas). In fourfold cross-validation, the system produced an average
Dice-S@rensen coefficient of 88.53% and outperformed state-of-the-art techniques.

Conclusions: Localizing the pancreas assists in reducing segmentation errors and eliminating
peripheral structures from consideration. Additionally, the morphology-guided model efficiently
improves the overall segmentation of the pancreas.
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1 Introduction

The abdominal computed tomography (CT) scans provide a noninvasive means to assess micro-
level morphological features of the pancreas and assists automated diagnosis and treatment plans
for several pancreatic disorders. Accurate segmentation of the pancreas in CT images is a pre-
requisite for reliable quantitative assessment of pancreatic features. Manual outlining of the
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pancreas can be erroneous, inconsistent, and impractical for large datasets. Automated segmen-
tation is thus highly preferable but is challenged by two major complications: first, the intensity
and textural properties of the pancreas and its peripheral organs (e.g., liver, kidney, spleen, etc.)
on CT images are highly identical, often resulting in several false positive segmented regions.
Second, the morphology of the pancreas is immensely variable and complex, deviating algo-
rithms to specify the exact boundary. This challenge becomes even more severe in the presence
of visceral fat tissue around the pancreas that creates fuzzy edges and inconsistent contrast on CT
images. All these factors undermine automated segmentation, and therefore, there is a pressing
need for a highly robust method that can efficiently overcome these issues currently withholding
rigorous assessment of the pancreas.

Literature offers several deep learning (DL)-based techniques that mostly follow deep con-
volutional neural networks (CNNs) for CT segmentation of the pancreas. Most of these
techniques'™ follow the two-dimensional (2D) approach as there are usually more slices to train
the network. Also, the slice thickness of scans can be at times as high as 5 mm (i.e., fewer slices
containing pancreas), 2D networks are the most preferred in such scenarios. On the contrary,
three-dimensional (3D) networks consider spatial and anatomical information of the pancreas,
offering highly stable and robust models.*® The 3D approaches, however, require higher com-
putational efficiency and memory compared with 2D models. A hybrid approach,’”™ based on the
strategy to integrate output from multiple 2D views to generate 3D segmentation results, has also
been adopted, though it still loses some 3D context information important for discriminating the
pancreas from its neighboring regions. In addition to DL techniques, common machine learning
approaches including random forests'® and Gaussian mixture model'' have also been used to
refine segmentation obtained by DL networks. The mean Dice-S@rensen coefficient (DSC)
achieved by existing techniques is as low as 75%, which is far from meeting clinical
needs.'> However, since the efficiency of the existing models widely varies by the choice of
the DL network and the training approach (2D/3D/hybrids) adopted, there is still an opportunity
to explore more sophisticated DL networks for improved performance and DSC.

In this work, we developed a multiphase DL 3D framework for accurate segmentation of the
pancreas in CT images. The methodology efficiently addresses the aforementioned issues and
works by (a) localizing the pancreas using a DL network visual geometry group(VGG)-19,'
which eliminates peripheral organs from consideration by determining the general location of the
pancreas and down-sizing 3D volume for segmentation of the pancreas, (b) generating soft labels
for the pancreas in the localized region using U-net DL architecture,'* and (c) updating soft labels
using generic prior knowledge on the morphology of the pancreas to help reduce false positive/
negative regions and specify the precise boundary of the pancreas in the final segmentation.

The proposed model was trained and tested on an National Institutes of Health (NIH)
dataset'> (82 CT scans of the healthy pancreas). The fourfold cross-validation was performed
where the system produced an average DSC of 88.53% and outperformed existing techniques.
The results are highly satisfactory—encouraging researchers to replicate the model and perform
validation on their datasets.

The rest of the paper is organized as follows: Sec. 2 describes the proposed methodology,
Sec. 3 provides the experimental and implementation details of the methodology, Sec. 4 reports
and discusses the results, and Sec. 5 concludes the paper.

2 Method

The proposed methodology consists of three stages, i.e., localizing the pancreas, creating soft
labels for the pancreas in the localized region, and upgrading soft labels by integrating the mor-
phology prior to the pancreas to get the final segmentation. Figure 1 is the depiction of the
methodology. Methods used in all three stages are explained in the following sections.

2.1 Localization of Pancreas

The pancreas is a retroperitoneal organ located in a complex arrangement of abdominal struc-
tures. It normally lies on the posterior abdominal wall behind the stomach, across the lumbar
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Fig. 1 Pictorial description of the proposed methodology.

(L1 to L2) spine. The pancreas is a long, thin, and relatively small organ in the abdomen. The
shape, size, and position of the pancreas are highly affected by several surrounding organs (e.g.,
liver, stomach, kidneys, and intestines), making it challenging for naive approaches to correctly
outline the pancreas.

Localizing the pancreas in 3D CT scans before performing segmentation has two advantages:
first, the peripheral regions presenting identical intensity or textural properties to the pancreas
can be easily eliminated as the localizer mainly focuses on the spatial arrangement of all ana-
tomical structures simultaneously in the abdomen rather than detecting the exact boundary of the
pancreas. This lessens the chances of getting too many false positive regions during segmenta-
tion as the pancreas occupies a very small (e.g., <0.5%) CT volume. Second, specifying the
general location of the pancreas allows reducing the dimensionality of the original 3D CT scans,
which otherwise requires a high cost of the computational power and memory for training the
segmentation models. Lack of hardware resources often leads to limitations in the depth and
architecture of the networks, which leads to compromising segmentation accuracy.

To localize the pancreas in 3D CT scans, we trained the VGG-19 architecture to determine
the overall location of the pancreas and down-size the 3D volume of the pancreas for segmen-
tation. The VGG-19 has been frequently utilized in multiple applications for object localization
and is among the top five networks with the highest test accuracies for object localization in
ImageNet, a benchmark dataset of over 14 million images belonging to 1000 different classes.
The original VGG-19 is a 19 layers deep convolutional neural network with 16 convolutional
layers, consisting of four maximum pooling layers, six fully connected layers, and a 1000-way
SoftMax classifier. However, we deployed a modified version where there are four pooling
layers but only three deconvolutional layers, where the third deconvolutional layer has an upsam-
pling factor of four instead of two to maintain image dimensionality (Fig. 2).

The modified model, although considered a smaller number of features and parameters
requiring limited Graphics Processing Unit (GPU) power and memory during training, achieved
optimal computational efficiency without compromising on model performance. The model was
trained to perform 3D localization of the pancreas by specifying a loose boundary around can-
didate regions for the pancreas. Subsequently, a normalized bounding box is created to down-
sample the volume consisting of candidate regions. Note that the downsampling operation did
not alter the original signal intensities or shape of the pancreas. A sample localized pancreas is
shown in Fig. 3.
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Fig. 3 (a) A sample abdominal CT image and (b) the localized 3D pancreas using proposed VGG-
19 localizer.

2.2 Soft Labels for Pancreas

In the second stage, a standard U-net'* architecture was trained to get soft labels for the pancreas
in the localized regions obtained in the first stage. The U-net is a DL architecture based on
commonly used region-based CNN for fast and precise segmentation of images, particularly
when training data are limited or have a great deal of variability. High efficiency and perfor-
mance of the U-net for segmentation of several small and variable organs in medical images
has been observed in previous studies. For each CT abdominal scan, the U-net would generate
a soft label, which is a probability map expressing the likelihood of each pixel as the pancreas.
Note that it is possible to train the localization and segmentation networks simultaneously as the
region of interest (ROI) used here can be generated without the aid of the output in the first stage.

2.3 Momphology-Guided Segmentation of Pancreas

In the third stage, a morphology prior, which is a 3D volume template defining the general shape
and size of the pancreas, was integrated with the soft labels from the second stage to obtain
improved segmentation labels. Having mentioned that the pancreas shares its border with
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surrounding structures and has a highly variable shape and size, such a template can efficiently
assist in improving segmentation accuracy by obtaining a more accurate estimation of the like-
lihood for each voxel within the ROI to be classified into as background or foreground (pancreas
class). We created this morphology prior using gold reference labels (delineation) for pancreases
in multiple abdominal CT scans. Labels from several pancreases were combined in a way to
yield maximum overlap. The template consists of a single 3D probability map in which the
brightness of pixels corresponds to their probability of being associated with the pancreas.
For example, pixels lying in the center of morphology prior express high probability (show high
intensity) to be part of the pancreas, whereas the pixels usually found farther from the center are
less bright (darker) and show less likely to be part of the pancreas. Figure 1 shows a sample
template of the morphology prior to the pancreas.

The integration of morphology prior and soft labels was performed by finding the joint prob-
ability of the two matrices, updating the original probability map obtained from U-net. The final
segmentation was achieved by finding an optimal threshold to perform the classification of pixels
into background and foreground based on their estimated probabilities. Our experiment showed
that the integration enhanced the overall segmentation accuracy, particularly at the borders of the
pancreas.

3 Implementation and Experiments

3.1 Data for Experiment

Training and validation of the proposed methodology were performed using an NIH pancreas
dataset, which contains 82 contrast-enhanced abdominal CT scans. The resolution of each of the
CT scans is 512 X 512 pixels in the x and y axes, respectively, whereas the number of sampling
slices on the z axis varies between 181 and 466 with the slice thickness varying between 0.5 and
1.0 mm. The dataset also comes with gold reference labels to outline the pancreases in all scans.
In fourfold cross-validation, the dataset was split into four roughly equal size subsets, where
three unique subsets were used for model training (~60 scans) in each fold while the remaining
one (~20) was used for model testing.

3.2 Implementing VGG-19 for Pancreas Localization

As a preprocessing step, the images were cropped to remove non-abdomen regions (background),
followed by downsampling the volume by a factor of 2 using bilinear interpolation.'® The images
start off as 512 (x axis) X 512 (y axis) with varying slice numbers that were cropped down to
218 x 239 x 288, followed by resizing to fit within the hardware limitations to a size of
96 x 96 x 128. The cropping while removing large portions does not remove any of the pancreas
pixels in any of the 82 images. The slice range in these images has the most variability and thus the
slice dimension was completely left uncropped. This was done to achieve fast processing; for
localization we were only required to identify the general location of the pancreas. Also, the inten-
sities in each image were normalized to unity (i.e., O to 1) using linear scaling.

The localizer consisted of a modified VGG-19 architecture with four downsampling steps
and three upsampling steps where the final upsampling step consists of strides of 4 as opposed to
the standard 2; this is done to preserve the dimensionality of the data. This change was made due
to hardware limitations. The loss function was set as the mean Dice loss of the pancreas. Network
optimization was realized with Adam gradient descent. The learning rate was le-6 with a batch
size of 1. The maximum epoch number was set to 1500 to keep the best model determined by the
performance invalidation data, although the algorithm training generally converged around 500
epochs. The training time on 60 training 3D images took around 8 hours on an NVIDIA GeForce
GTX 2080Ti 10 GB GPU.

The output of the localizer was a probability map where any pixel with a probability higher
than 0.5 was considered a candidate region for the pancreas. The resultant labels were up-
sampled, using bilinear interpolation, to return the label to the original dimensionality and are
then used to generate a bounding box. The bounding box was used to specify a localized region
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(around the candidate regions) in the original image for segmentation to be performed. Padding
was applied to the image for a uniform input size for the segmentation process in the following
stages.

The labels acquired from the localizer were processed to remove small regions by deleting
clusters of pixels that were unconnected from the main body of the label. Removed pixels are
input as O intensity pixels. Also, the size of the localized images was set to 96 X 96 X 128.
Padding (empty slices) in the slice dimension has been applied for the cases with the smaller
pancreas. The result is a localized image of the pancreas with most non-pancreas regions set to O
while still maintaining a 100% recall of the pancreas regions across all cases (Fig. 3).

3.3 Implementing U-Net to Generate Soft Labels for Pancreas

To generate soft labels for the pancreas, the standard U-net architecture'* was deployed. The
original model has three downsampling and three upsampling steps. However, due to the large
size of our 3D data, we made a modification to increase the depth of the proposed U-net to four
downsampling and four upsampling steps. This was done to increase the number of parameters
used to segment the pancreas in the larger dataset and increase the overall performance of the
model. The U-net takes the 3D volume as input consisting of the localized pancreas with original
intensities and most of the non-pancreas regions with O intensity.

The loss function was the mean Dice loss of the pancreas. Network optimization was realized
with Adam gradient descent whereas the learning rate was le-5 with a batch size of 1. The
training time, hardware, and number of epochs for U-net were the same as given for the
VGG-19 localizer. The outcome of the U-net was a probability map indicating the likelihood
of each pixel as pancreas within the bounding box. Both VGG-19 and U-net architectures were
implemented in Keras'’ with the backend of Tensorflow. Table 1 provides the input description
of the localization and segmentation model used throughout the process.

3.4 Generating and Applying Morphology Prior

Morphology prior is generated using the gold reference labels of pancreases of training images.
The labels were combined in a way to yield maximum overlap between all 60 labels in the
training datasets in each fold during fourfold cross-validation.

Let L is the 3D matrix representing the morphology prior, whereas L; (another 3D matrix)
denotes the reference label of the pancreas in i’th image in the training set of n images. All pixels
belonging to the pancreas in L; represent gray level 1 (i.e., probability 1), whereas all non-pan-
creatic pixels have 0 gray levels (i.e., probability 0). The pixels with gray level 1 were set with
probability 1, whereas nonpancreatic pixels with O gray level were set with 0.1 probability (low-
est baseline probability) to avoid returning O probability during further processing. An overlap
was defined as when any two pixels that belong to pancreases from two labels of two different

Table 1 The table provides the matrix sizes and channels for the localization and segmentation
model used throughout the process.

Localization Segmentation
Input y Input x Input z Channels Input y Input x Input z Channels
96 96 128 1 144 208 128 1
48 48 64 32 72 104 64 32
24 24 32 64 36 52 32 64
12 12 16 128 18 26 16 128
6 6 8 256 9 13 8 256
12 12 16 128 18 26 16 128
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training images have identical spatial (x,y, z) coordinates. The morphology prior L was gen-
erated as L = [], L;, such that for any L;_; and L;, there is a maximum overlap (intersection)
of pancreatic pixels, whereas n is the total number of training images. The pixel probabilities in L
are normalized to unity by scaling down between 0 and 1. This process generated a probability
map of the general morphology (shape and size) of the pancreas. Padding is applied so the prob-
ability map matches the dimensions of the segmentation output.

To integrate morphology prior with the outcome of the U-net model, pixel-wise multiplica-
tion of probabilities of morphology prior (L) and the soft labels was performed. This new prob-
ability map (resulting matrix) was then scaled to be between 0 and 1 and applied thresholding to
obtain optimal segmentation. The optimal threshold to classify pixels into background and fore-
ground based on their estimated probabilities was estimated by-first, excluding all pixels with
<0.5 probability in the segmentation probability map; this was followed by specifying the opti-
mal threshold that gives the highest mean DSC on the training data in each fold. The average of
all optimal thresholds obtained in fourfold was found to be 0.55.

4 Results and Discussion

The evaluation of localization of pancreas and segmentation of pancreas (with and without inte-
grating morphology prior) was performed as follows.

The performance of the localizer was assessed by calculating the pixel-wise true positive rate
(recall) (TPR) = TP (true positive)/P (positive) and true negative rate (TNR) = TN (true negative)/
N (negative) in the localized region specified by the bounding box. The goal of the localization
process was to ensure that the box contains as much of pancreatic regions and contains as low a
number of nonpancreatic regions as possible. A TPR equals to 1 indicates that the box contains
100% of the pixels that belong to the pancreas. On the other hand, the lower the TNR than 1, the
higher number of nonpancreatic regions (false positives) will be in the box. The localizer per-
formed excellently and obtained a mean TPR of value 0.993 in each of fourfold during the val-
idation process, whereas the TNR in the fourfold was observed to be 0.955 on average, as given
in Table 2. The gold reference labels were used for calculating the evaluation metrics. It was
observed that by localizing the pancreas, the system eliminated 80% to 90% of non-pancreatic
regions from the original images, reducing the complexity of the segmentation problem to a
significant extent.

The segmentation using U-net with and without integrating morphology prior was evaluated by
computing mean DSC as segmentation accuracy. The DSC is a similarity metric between the pre-
diction pixels set X and the gold reference label set Y, with the mathematical form of
DSC = (2x|XnY]|)/(IX]| +Y]). Note that the purpose of obtaining DSC for segmentation
without integrating morphology prior is only to assess the overall improvement achieved with
and without applying morphology prior. The mean DSC achieved by the proposed segmentation
model with and without integrating morphology prior in fourfold cross-validation was found 83%
and 88.53%, respectively, showing ~6% improved accuracy when the model incorporates mor-
phology prior. A sample (Fig. 4) shows the outcome after integrating morphology prior to the
original soft labels. Also, Table 3 provides insight into how different combinations of the proposed
strategies influence the performance of the overall system.

Table 2 Outcome of the proposed VGG-19 localizer for pancreas in fourfold cross validation.

Fold Mean TPR (%) Max TPR (%) Min TPR (%) Mean TNR (%) Min TNR (%) Max TNR (%)

1 99.22 + 1.17 100 95.87 97.08 + 15.92 99.54 91.85
2 99.42 + 1.17 100 95.86 93.22 + 13.68 99.44 87.63
3 99.18 + 1.63 100 93.30 96 + 16.65 99.57 91.13
4 99.43 + 1.27 100 94.72 95.62 + 13.32 99.55 88.34
Mean 99.31 100 95.03 95.48 99.52 89.73
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Fig. 4 (a) Segmentation obtained before morphology prior application. Red, green, and brown

labels indicate false positive,

false negative, and true positive

regions,

respectively.

(b) Segmentation of pancreas after applying morphology prior to the pancreas in (a). Green and

yellow labels show true positive and false negative regions, respectively.

Table 3 The ablation table provides the model performance based on different combinations of
model components to understand the contribution of each component to the overall segmentation

system.
Results (DSC)

Localization Morphology Segmentation Min Max Mean
using VGG-19 prior using U-net (%) (%) (%)
Yes No No 62.51 99.16 63.61
Yes Yes No 73.0 99.21 76.02
No No Yes 71.04 97.38 79.20
Yes No Yes 77.01 98.3 82.55
No Yes Yes 76.08 99.07 84.01
Yes Yes Yes 74.62 96.37 88.53

Table 4 Comparison of mean DSC achieved by available state-of-the-art methods and the pro-
posed technique for pancreas segmentation using NIH dataset.

Group name Year Mean DSC (%) Min DSC (%) Max DSc (%)
Cai et al.® 2017 82.40 60 90.10
Yu et al.2 2018 84.50 62.81 91.02
Oktay et al.* 2018 83.10 N/A N/A
Zhu et al.'® 2018 84.59 69.62 91.45
Cai et al.® 2019 74.30 N/A N/A
Li et al.® 2019 85.70 73.20 91.60
Zhao et al.'” 2019 85.99 57.20 91.20
Nishio et al.” 2020 78.90 N/A N/A
Xia et al.' 2021 79.90 N/A N/A
Ours 88.53 74.62 96.37
Journal of Medical Imaging 024002-8 Mar/Apr 2022 « Vol. 9(2)
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Fig. 5 Segmentation results showing the best, average, and worst DSC by the proposed
methodology.

Also, the quantitative results of the proposed segmentation and performance comparison with
the existing algorithms for pancreas segmentation published to date are reported in Table 4.

Moreover, the proposed method outperformed state-of-the-art algorithms in terms of mean
DSC (increased by a factor of ~3%), implying that the approach is more stable and robust.
Furthermore, failure analysis was performed qualitatively. The majority of the incorrectly iden-
tified pixels were found on the border of the pancreas, typically where most physicians struggle
with delineating between foreground and background. In addition, most of the cases with the
lowest DSC had large nonpancreatic regions wrongly classified as pancreas mainly due to their
intensities identical to those of the pancreas and their spatial locations, which are in proximity of
the pancreas. However, the proposed model efficiently addressed these issues to the best extent in
most of the cases and correctly classified these pixels as shown in the sample outcome of the final
segmentation in Fig. 5. The overall system remained stable during all experiments, and thus
replicable on other datasets.

5 Conclusion

A multiphase DL framework for accurate segmentation of the pancreas in CT scans is presented.
The method works by localizing the pancreas using the VGG-19 DL network, followed by gen-
erating soft labels for the pancreas in the localized region using U-net architecture. The soft
labels were then integrated with a 3D volume template defining the general morphology of the
pancreas to update soft labels and achieve improved segmentation. The model was trained and
tested on an NIH dataset of 82 contrast-enhanced CT scans and produced highly satisfactory
results, reaching a mean DSC of 88.53% in fourfold cross-validation and outperforming the
state-of-the-art techniques.
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