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Abstract. Photoelectrochemical (PEC) energy conversion systems have been considered as a
highly potential strategy for clean solar fuel production, simultaneously addressing the energy
and environment challenges we are facing. Tremendous research efforts have been made to
design and develop feasible unassisted PEC systems that can efficiently split water into hydrogen
(H2) and oxygen with only the energy input of sunlight. A fundamental understanding of the
concepts involved in PEC water splitting and energy conversion efficiency enhancement for
solar fuel production is important for better system design. This review gives a concise overview
of the unassisted PEC devices with some state-of-the-art progress toward efficient PEC devices
for future sustainable solar energy utilization. © 2016 Society of Photo-Optical Instrumentation
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1 Introduction

With the increasing energy consumption and the depletion of fossil fuels, it is urgent to develop
clean, earth-abundant, and renewable energy resources to effectively address energy issues.
Photoelectrochemical (PEC) water splitting has been found to be a promising approach for
directly converting solar energy into sustainable and environmentally friendly hydrogen
fuel.1–5 Over the past four decades, even though great achievements have been obtained, the
solar-to-hydrogen (STH) efficiency is still too low for practical applications.6 The key challenge
for efficient solar hydrogen generation is to explore suitable photoelectrode materials that meet
the following criteria: (1) broad range of solar spectrum absorption, (2) high photochemical
stability, (3) efficient use of photogenerated electrons and holes, (4) suitable band edge positions,
(5) low overpotential, and (6) low cost.7–10 Typically, a single semiconductor is difficult for
achieving all of the above requirements. For example, TiO2 is stable in aqueous electrolytes
under light illumination, but its large bandgap (3.0 eV) limits its light utilization to the UV region
that accounts for only ∼4% of the solar energy on earth, resulting in low STH efficiency.11,12 On
the other hand, although multijunction silicon or heterojunction III–V semiconductors as photo-
electrodes considerably increase the visible light conversion efficiency, they increase the cost
while shortening the lifetime of the whole devices due to their photocorrosion in aqueous
electrolytes.13–15 Therefore, the number of reliable and reproducible semiconductors for solar
water splitting is limited. Combining the advantages of different semiconductors to form
heterojunction systems or integrating state-of-the-art semiconductors with photovoltaic (PV)
devices to form tandem cells may open up more opportunities, which have been extensively
investigated during the past decade.16–20 Especially, self-driven monolithic and PEC tandem
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systems have attracted great attention due to the low cost when compared to the use of only PV
devices for water splitting.21–26 Nevertheless, the obtained STH and stability for the reported
systems are still too low for the 10% target toward practical applications, even though many
unique and novel material configurations have been revealed in recent years.27–33

In this review, we concisely summarize the recent progress and challenges in the unassisted
PEC water splitting system, which has been considered as the ultimate solar water splitting proc-
ess, compared to many reported PEC systems, which still rely on the applied external bias. We
pay particular attention to nanostructure engineering of the photoelectrodes and the concepts of
PEC configuration design for efficient water splitting. The review will start with some basic
principles of unassisted PEC water splitting, followed by the design of photoelectrode materials
based on nanostructure engineering and surface modifications. Then, the recent progress of PEC
system configurations will be summarized. Finally, a brief overview including the challenges and
perspectives of this research field will be given. We believe that this comprehensive review
would not only provide important information about the recent progress of unassisted PEC
water splitting systems but also could inspire readers to apply the discussed strategies to further
improve the PEC solar fuel production performance.

2 Principles of Unassisted Photoelectrochemical Systems

Figure 1(a) presents the basic principle of a conventional PEC water splitting system. Under light
illumination, electrons (e−) will be excited from the valence band (VB) to the conduction band
(CB), where holes (hþ) are left in the VB of the working electrode. Then, the electrons transport
to the counter electrode and participate in the hydrogen-evolution half-reaction (HER).
Meanwhile the holes transfer to the surface of the working electrode and are involved in the
oxygen-evolution half-reaction (OER).34,35 Typically, overall water splitting can be achieved
by applying an external bias if the semiconductor itself in the working electrode is suitable
only for OER or HER. For example, some metal oxides, such as Fe2O3, WO3, and BiVO4,
can be used as working electrodes for water splitting with a proper bias, even though their
CB positions are unable to reduce water themselves.36–40

According to the general mechanism in PEC H2 production, the selection of light absorbers
and device configurations is important in driving effective water splitting reactions. A Z-scheme
concept has been developed through a two-step excitation mechanism induced by coupling two
different light absorbers, which is inspired by natural photosynthesis in green plants.41–44 The
charge transfer in a Z-scheme system is different from that in the general p-n heterojunction
configuration. For p-n heterojunctions, photogenerated electrons in photosystem II (PS II)
with higher CB are transferred to photosystem I (PS I) with lower CB to be involved in
HER, while holes are transferred to the opposite direction for OER due to the built-in electrical
potential in the interfaces [Fig. 1(b)]. By contrast, photogenerated holes in the VB of PS I are
promoted in OER, while electrons in the CB of PS II are used for HER in the Z-scheme con-
figuration [Fig. 1(c)]. Thus, the Z-scheme system demonstrates the strong oxidized ability of PS I
and the strong reduced ability of PS II. The advantage of the Z-scheme water splitting system is
to utilize a wider range of visible light because the energy required to activate each photocatalyst
can be reduced as compared to the one-step water splitting system.45–47 Successful overall water

Fig. 1 (a) A schematic illustration of the photoelectrochemical water splitting process, charge
transfer in a heterojunction PEC system with (b) p-n junction type, and (c) Z-scheme configuration.
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splitting via two-step photoexcitation under visible light illumination has been reported by com-
bining several semiconductors.48–51 Especially, the artificial photosynthesis (AP) concept has
emerged as an attractive approach to mimic the natural photosynthesis process by utilizing suit-
able semiconductors to efficiently drive the thermodynamically uphill water splitting reaction
under sunlight illumination.52–55

3 Recent Progress and Challenges of Unassisted Photoelectrochemical
Devices

In this section, recent efforts on the development of novel nanostructured design concepts and
surface modification strategies for an unassisted PEC water splitting system will be briefly
presented and discussed in terms of the improvement of performance.

3.1 Nanostructured Semiconductor Design

In general, PEC performance of the devices depends on the efficient light utilization, photogen-
erated carrier transport/separation, and stability in the PEC system. Nanostructured semiconduc-
tors have been revealed to be promising for PEC water splitting due to their large surface area and
size-dependent properties (e.g., tuned bandgap energy, shortened carrier collection pathways,
and efficient charge transfer).56 Therefore, the selection of a suitable semiconductor with excel-
lent nanoarchitecture is of importance for PEC system construction. n-type semiconductors (e.g.,
WO3, Fe2O3, TiO2, and BiVO4) are commonly developed as photoanodes or top absorbers in
tandem devices due to their low VB energy positions with more positive VB potential for water
oxidation reaction.57–61 However, when these semiconductors are used as photoelectrodes, the
randomly oriented bulk nanoparticles (NPs) in photoelectrodes might decrease the PEC perfor-
mance with a high charge recombination rate due to a large number of charge trap sites.
To overcome this issue, well oriented one-dimensional (1-D),62–68 two-dimensional (2-D),69–73

and three-dimensional (3-D)74–76 nanostructures have been developed in recent years. The 1-D
nanostructures including nanowires,77–79 nanorods,80–82 and nanotubes83–86 provide both efficient
light harvesting and superior charge transport for PEC water splitting. Meanwhile, 2-D nano-
structures have also shown interesting properties in various photochemical fields.87–89 In particu-
lar, metal oxide and chalcogenide 2-D nanosheets are unique nanostructures with high-specific
surface area and excellent crystallinity, which is beneficial for efficient charge separation and
migration in water splitting.90–94 More recently, researchers have integrated different functional
materials of 1-D or 2-D structures to construct 3-D hierarchical nanostructures in order to
increase large surface areas for light harvesting without inhibiting charge transfer and
separation.95–99 Hence, it is a promising nanostructure model for efficient water splitting due
to broader light absorption, rapid charge migration and separation.

On the other hand, p-type semiconductors such as boron-doped Si,100 Cu2O,
101 CuInS2,

102

and GaInP2
14 exhibit small bandgaps, thereby a significant proportion of visible light can be

harvested. However, when p-type materials are employed to PEC water splitting, severe
challenges such as large overpotential, instability, and low absorption coefficient have been
observed.103 Thus, recent strategies have been focused on improving the photostability
through loading suitable protective layers or coupling with n-type semiconductors to form
heterojunctions.104 For example, n-TiO2 has been reported as an effective protective layer
for enhancing the photostability and photoactivity of p-type photoelectrodes.105–107 Such a het-
erojunction concept by coupling different photoanode and photocathode layers would be a prom-
ising approach for unassisted PEC water splitting systems. For designing such systems, the
nanostructured morphology and crystallinity of semiconductors with suitable CB and VB posi-
tions for water splitting and the interfacial properties in the heterojunction should be carefully
considered. Moreover, the fabrication process of the photoelectrodes in a PEC system should be
optimized by exploring simple, cost-effective, and environmentally friendly techniques. Figure 2
represents the engineering strategies that are critical to meet all requirements for efficient PEC
water splitting. The recent reported PEC systems, which have been developed based on these
strategies, will be further presented and discussed in Sec. 3.3.
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3.2 Surface Modification of Photoelectrodes

In addition to nanostructure engineering, the surface modification of photoelectrodes is also
important for achieving high PEC performance. As the surfaces of the photoelectrode materials
are active sites for redox reaction, the surface states are closely related to photon energy absorp-
tion properties and surface charge transfer ability of the semiconductors. Doping is one common
strategy to improve the conductivity of semiconductors and extend the lifetime of charge carriers
by reducing recombination of the photogenerated electron–hole pairs.108–116 In addition, loading
HER or OER cocatalysts on the surface of the semiconductor is also an efficient approach to
reduce the charge recombination at a lower applied potential and increase the charge transfer for
the water splitting process.117 Cocatalysts should be optimized to offer highly active sites to
separate the photogenerated charges for HER or OER half reactions, avoiding the photogener-
ated electrons and holes with high redox ability to react with the semiconductor itself, which
improves the stability. Noble metals (e.g., Pt) and noble metal oxides (e.g., IrO2, RuO2) are
usually used as effective HER and OER cocatalysts, respectively.118,119 Nevertheless, it is
not favorable to scale up their utilization in PEC devices due to their cost and rarity. Thus,
noble metal-free cocatalysts, such as cobalt compounds,120–126 nickel-based materials,127,128

and chalcogenides129–132 for photoelectrode surface modification, have been developed.
In addition, plasmonic NP coupling is another strategy to utilize the optical properties of

nanometals for better light harvesting.133–135 Typically, plasmonic metal NPs can be employed
to capture light and transfer the excitation energy through the localized surface plasmon to a
combined semiconductor with large bandgap. In general, when plasmonic metal nanostructures
are contacted with semiconductors, they should be able to alleviate charge recombination and
enhance light absorption, resulting in higher PEC performance than their pure semiconductor
counterparts.136–146 For instance, Zhang et al.97 studied PEC performance of Au NPs deposited
on the TiO2 bilayered structure photoanode and reported a STH efficiency of 0.71% achieved,
around which is one of the highest values reported in Au∕TiO2-based photoanodes. The excel-
lent PEC water splitting activity in visible light can be ascribed to the generated energetic hot
e−∕hþ of Au NPs that were injected into the CB of TiO2 through the excitation and decay of
surface plasmons. In another study, the utilization of a plasmonic Au nanohole array combined
with Fe2O3 nanorod array photoanode led to significant enhancement of the photocurrent
density147 and a plasmon-induced resonant energy transfer (PIRET) effect was proposed to
explain this phenomenon. In addition to photoanodes, CuO nanowires decorated with Ag
NPs as photocathodes were also studied in which the surface plasmon energy transfer from
Ag NPs contributed to enhanced photocurrent with a STH efficiency of 2.16% achieved.148

The use of plasmonic Ag NPs deposited on TiO2 photoanodes can also further improve the
photocurrent density by LSPR property of Ag NPs.149,150

Recent works on nanostructure engineering and surface modification for innovative PEC
system design are summarized in Table 1. It is apparent that many efforts have focused on

Fig. 2 The important engineering strategies to achieve efficient PEC water splitting.
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Table 1 PEC devices for solar water splitting.

Photoelectrode system Cocatalysts
Photocurrent
(mAcm−2) Light source STH/IPCE (%) References

p-GaInP2ðPtÞ∕TJ∕GaAs Pt 120 at ∼0.15 V 11 suns,
1.19� 0.05 Wcm−2

STH ¼ 12.4% Ref. 24

3jn-a-Si OER: Co–
Bi, HER:
NiMoZn

∼3 at 0 VRHE 1 sun, AM 1.5 G STH ¼ 2.5%
(wireless) and
4.7% (wired)

Ref. 151

Si pillars Mo3S4 ∼9 at 0 VRHE λ > 620 nm,
28.3 mWcm−2

STH ¼ 10% Ref. 130

p-Si∕SiO2∕Ti Pt ∼20 at 0 VRHE 1 sun, AM 1.5 G STH ¼ 2.9% Ref. 152

nþ p-Si∕TiO2 Pt ∼22 at 0.3 VRHE λ > 635 nm,
AM 1.5 G

IPCE ¼ ∼90% Ref. 153

AlGaAs/Si RuO2∕Pt
black

20.1,
unassisted

135 mWcm−2 STH ¼ 18.3% Ref. 154

W-doped BiVO4∕Si Co-Pi 4 at 1.23 VRHE 1 sun, AM 1.5 G STH ¼ 4.9% Ref. 155

BiVO4 on 1D ZnO
nanorods

Co-Pi 3 at 1.2 VRHE λ > 420 nm,
AM 1.5 G

STH ¼ 0.88% Ref. 68

Ba-Ta3N5 nanorod IrO2 6.7 at
1.23 VRHE

1 sun, AM 1.5 G STH ¼ 1.5% Ref. 156

WSe2 Pt/Ru 15 at 0 VRHE 100 mWcm−2 ηc ¼ 7.0% Ref. 157

Si∕TiO2 nanotree HER: Pt
OER: IrOx

— 150 mWcm−2 STH ¼ 0.12% Ref. 79

p-Si∕Fe2O3−AuNPs Au 2.6 at 0 VPt 60 mWcm−2 STH ¼ 6% Ref. 158

DSSC∕WO3ðnÞ Pt ∼1.56 at
0 VRHE

100 mWcm−2 STH ¼ 1.9% Ref. 22

WO3∕C3N4 CoOx 5.76 at
2.1 VRHE

AM 1.5 G IPCE ¼ 37.5%
at 400 nm and

1.6 VRHE

Ref. 95

Pt-doped Fe2O3 Co-Pi 4.32 at
1.23 VRHE

1 sun, AM 1.5 G IPCE ¼ 50%
at 400 nm

and 1.23 VRHE

Ref. 159

Cu2O∕ðZnO;Al2O3Þ∕TiO2 Pt −7.6 at 0 VRHE AM 1.5 G IPCE ¼ 40%
between 350 and
480 nm, 0 VRHE

Ref. 160

Cu2O∕ðZnO;Al2O3Þ∕TiO2 MoS2þx −5.7 at 0 VRHE AM 1.5 G STH ¼ 7% Ref. 131

Cu2O∕BiVO4 HER: RuOx
OER: Co-Pi

1, unassisted 100 mWcm−2 STH ¼ 0.5% Ref. 161

Au at TiO2∕Al2O3∕Cu2O — −4.34 at
0 VRHE

AM 1.5 G IPCE ¼ 78%
at 340 nm

Ref. 43

C∕Cu2O∕Cu — −3.95 at
0 VRHE

AM 1.5 G STH ¼ 0.56%
at 0.21 VRHE

Ref. 162

CdS∕CuGaSe2 Pt ∼19 at 0 VRHE 300 W Xe lamp STH ¼ 0.83%
at 0.2 VRHE

Ref. 163

CdS∕AgxCu1−xGaSe2 Pt 8.1 at 0 VRHE AM 1.5 G IPCE ≈ 50%
at 500 nm
and 0 VRHE

Ref. 164
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controlling nanostructures, doping with suitable elements, and loading cocatalysts in heterojunc-
tion photoelectrodes. However, the high photocurrent and STH efficiency achievements in most
of the systems are limited and external bias is generally required for overall water splitting.
Notably, multilayered PEC devices composed of nanostructured metal oxide semiconductors,
perovskite solar cells (PSCs), and Si photoelectrodes can exhibit high STH up to 10%, whereas
such PEC devices are expensive, complicated, and unstable in aqueous electrolyte under light
illumination. In order to overcome these drawbacks, the selection of excellent crystalline photo-
electrode materials and suitable electrolytes is essentially important, and the overall PEC system
should be considered by designing the configuration of multilayered photoelectrodes with pro-
tective layers. Such conditions would be the key factors in developing unassisted PEC systems
for overall water splitting.

3.3 Artificial Photosynthesis Photoelectrochemical System Design

3.3.1 Tandem cell configuration

Tandem cell configuration is a promising approach to address the issues of single or heterojunc-
tion PEC devices for unassisted solar water splitting. In the early stage, tandem PEC devices
consisting of a semiconductor and a dye-sensitized solar cell (DSSC) were applied for water
splitting. For instance, Kim et al.167 revealed a tandem cell composed of a WO3∕Pt photoelec-
trode connected with a DSSC for unassisted water splitting where the maximum STH efficiency
of 0.35% was obtained. Subsequently, a Fe2O3 and WO3 photoanode with a DSSC in tandem
configuration was developed, as illustrated in Fig. 3.168 Without external bias, the achieved STH
efficiencies were 3.10% and 1.17% for the WO3∕DSSC and Fe2O3∕DSSC tandem systems,

Fig. 3 Schematic and band energy diagrams represent (a) WO3, (b) Fe2O3 photoanodes com-
bined with a DSSC using D4 dye in tandem cell design. Red dotted lines indicate the reduction and
oxidation potentials of water and (c) Faradaic efficiency measurement of a tandem cell with inset
shows a net measured photocurrent within 9 h. Green and orange circled plots correspond to H2

and O2 evolved gases, respectively. Reprinted with permission from Ref. 168. Copyright 2011
Nature Publishing Group.

Table 1 (Continued).

Photoelectrode system Cocatalysts
Photocurrent
(mAcm−2) Light source STH/IPCE (%) References

CH3NH3PbI3 with
NiFe DLH/Ni foam

NiFe DLH 10, unassisted AM 1.5 G STH ¼ 12.3% Ref. 165

CH3NH3PbI3 Ni 12 at 0 VAg∕AgCl 1 sun, AM 1.5 G — Ref. 166
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respectively. The low STH efficiency in this tandem configuration is due to the mismatched band
energy configuration and interfacial charge recombination between photoelectrodes and the
combined DSSCs. Especially, charge recombination occurred between the injected electrons
from the semiconductors and the oxidized dye (I−3 ), inhibiting the efficient redox reaction
with water in the system.

More recently, an efficient wireless monolithic tandem device consisting of a bipolar con-
figuration with a highly transparent BiVO4-sensitised mesoporous WO3∕Pt film and a por-
phyrin-dye-based photoelectrode was reported.169 An extraordinarily high STH efficiency of
5.7% and H2∕O2 evolutions were revealed without any applied bias. The porphyrin-dye-sensi-
tized photoanode with a cobalt electrolyte generated sufficient bias to drive the water splitting
reaction forward in this monolithic tandem configuration. Although the efficient design for AP is
controversial, the combination of abundant metal oxide-based photoelectrodes with DSSCs has
been explored as a promising PEC device configuration for unassisted solar water splitting.
Nevertheless, the DSSC component generates low voltages that are not sufficient for water
splitting, and more attention has been paid to recently developed PSCs due to their much higher
Voc (0.9 to 1.5 V).170 For instance, a dual artificial-leaf-type tandem PEC device composed
of a robust cobalt carbonate (Co-Ci)-catalyzed Mo-doped BiVO4 photoanode and a
CH3NH3PbI3-based PSCs (Fig. 4) can deliver a photocurrent density of 5 mA cm−2 at 1.23 V
versus RHE for the unique and stable photoanode and a STH efficiency of 3.0% for the wireless
device.171 Gratzel et al. reported a novel PSCs-assisted PEC water splitting system composed of
organohalide CH3NH3PbI3-based PSCs as the external power supply and NiFe-layered double
hydroxides as the catalytic electrodes, which achieved a photocurrent density of ∼10 mA cm−2

with a STH efficiency of 12.3%.165 Although this device configuration exhibited a high effi-
ciency for PEC water splitting, the electrodes were not directly settled in photoreactions.
Consequently, the hydrogen generation occurred by a water electrolysis process that power
was generated through the externally wired two PSCs in series. Meanwhile, a monolithic tandem
design with only one CH3NH3PbI3 PSC/Ni layer without an external wire connection was
developed and a high photocurrent density of 12 mA cm−2 was achieved (Fig. 5).166 Overall,
the device complexity and stability issue of the dye and organohalide perovskite materials in
the DSSCs and PSCs, and efficient photon utilization should be considered in these design
concepts.

Fig. 4 Schematic diagrams of (a) wireless dual light absorber tandem PEC device, (b) energy
band diagram and charge transfer in artificial water splitting, (c) photocurrent density and
H2∕O2 gases evolutions of Co-Ci/H, 3%Mo∶BiVO4 PSC tandem device, and (d) evolved
H2∕O2 gases and calculated STH in unassisted solar water splitting. Reprinted with permission
from Ref. 171. Copyright 2015 American Chemical Society.
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On the other hand, coupling a PEC device with a PV cell in tandem was developed to extend
the light absorption range and improve the photocurrent density in unassisted solar water split-
ting. Ding et al.172 achieved a STH efficiency up to 2.5% in an unassisted water splitting system
using an earth-abundant photoanode and a Si-solar-cell-based photocathode (Fig. 6). The parallel
irradiation mode exhibited higher efficiency than the tandem illumination one because the
former system offered sufficient driving force for water splitting. More recently, an overall
STH efficiency of 0.91% was achieved on a system composed of a Fe2O3 photoanode and
a Si photocathode with NiFeOx and TiO2∕Pt as cocatalysts (Fig. 7).173

3.3.2 Monolithic design

Despite continuing efforts on searching various photoanode materials to combine with solar
cells, the high current densities are accompanied with the challenges of photocorrosion or chemi-
cal instability under oxidative conditions. A stand-alone unassisted PEC device would be an
ultimate consideration for H2∕O2 evolutions in water splitting. Accordingly, simpler concepts
using dual-absorber tandem devices have been explored with acceptable STH efficiencies. For

Fig. 6 (a) Schematic diagram of FeOOH∕Mo∕BiVO4 photoanode with the Ni/Si-solar-cell-based
photocathode under parallel and tandem light illumination for direct water splitting and (b) I–V
curves and obtained values of photoelectrodes measured in 0.5M Na2SO4 electrolyte and two
electrode configurations under AM 1.5G light illumination. Reprinted with permission from
Ref. 172. Copyright 2014, Royal Society of Chemistry.

Fig. 5 (a) Schematic diagrams of CH3NH3PbI3 with Ni surface layer tandem cell configuration and
(b) photocurrent densities in unassisted hydrogen production at 1 sun illumination. Reprinted with
permission from Ref. 166. Copyright 2015, American Chemical Society.
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example, a p-n junction photoelectrode comprising p-type Cu-Ti-O and n-type TiO2 nanotube
arrays with efficient spectral photoresponse (380 to 885 nm) and antiphotocorrosion properties
can result in a significantly enhanced photocurrent density of ∼0.25 mA cm−2 and a photocon-
version efficiency of 0.30% under global AM 1.5 G illumination (Fig. 8).174 Similarly,
a Mn-oxide–TiO2 coated triple junction-amorphous-Si (Tj-a-Si) was used for monolithic
self-driven water splitting with a high STH efficiency of 3.25% and good long-term stability
under solar-simulated light illumination.175

In a parallel study, Reece et al.151 reported a Tj-a-Si system modified with cocatalysts for
water splitting. The wireless configuration of a Tj-a-Si with Co-oxygen-evolving complex and

Fig. 8 (a) Schematic illustration of the n-type TiO2∕p-type Cu-Ti-O nanotube arrays in tandemwith
a salt bridge and immersed in hybrid electrolyte containing 1 M KOH and 0.1 M Na2HPO4 and
(b) Self-biased photocurrent density of the n-type TiO2∕p-type Cu-Ti-O nanotube arrays in tandem
under global AM 1.5 G illumination. Reprinted with permission from Ref. 174. Copyright 2008
American Chemical Society.

Fig. 7 (a) Schematic diagrams of Fe2O3 photoanode and amorphous Si photocathode tandem
device for overall unassisted water splitting, (b) SEM image of a tandem photoelectrode, (c) cur-
rent–potential (J–V) curves of various photoelectrodes, and (d) net photocurrent of NiFeOx -modi-
fied second regrowth treatment (rgH II) with TiO2∕Pt loaded amorphous silicon photocathode over
10 h in 0.5M phosphate solution in a unassisted two-electrode system. Reprinted with permission
from Ref. 173. Copyright 2015 Nature Publishing Group.
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NiMoZn as OER and HER cocatalysts presented a high STH efficiency of 4.7% under AM 1.5 G
simulated sunlight illumination. It has been confirmed that this design can generate electrons
and holes with enough energy to split water (VOC > 1.23 V) in a simply engineered configu-
ration. However, the high cost of the photoelectrode materials and the complexity of the
fabrication process would be critical limiting factors in commercializing this water splitting
system.

3.3.3 Heterojunction components of photoelectrochemical device design

Most studies have been focused on improving the performance of individual semiconductors to
achieve the targeted STH efficiency. However, the performance of the whole PEC system and the
interaction between the individual components for solar energy conversion should also be
explored. Liu et al.79 reported a fully integrated nanotree PEC system consisting of cocatalysts
loaded Si and TiO2 nanowires for direct solar water splitting (Fig. 9). An STH efficiency of
0.12% was achieved in this unassisted PEC water splitting system. However, this nanotree
PEC system still needs to improve the current density and maximize the STH efficiency via
excellent interfacial engineering and surface modifications. More recently, a tandem PEC system
consisting of a n-p homojunction of Si microwire arrays coated with TiO2 thin films presented a
current density of 0.32 mA cm−2 and a STH efficiency of 0.6% without external bias (Fig. 10).176

It is well known that the use of Si photoelectrodes in a PEC water splitting system reduces the
cost competitiveness, thus novel systems with low cost materials have continuously been
explored.

Another promising concept for unassisted PEC water splitting systems is a standalone Z-
scheme configuration. To obtain high performance, we need to consider the main factors, in
particular, the design of the fully integrated system, the functions of the individual materials,
and the optimization of the interfaces between the individual components.177 One typical exam-
ple is the design of W/Mo-doped BiVO4 and ZnxCd1−xSe dual n-type photoelectrode system
with the presence of redox mediators (I−∕IO−

3 or S2−∕S2−n ),178 which highlights the challenging
nature of designing redox mediator-free Z-scheme systems via metal doping and surface modi-
fication for efficient water splitting. Likewise, Yang et al.179 studied the surface modification
with different catalysts in order to improve the overall water splitting efficiency and stability
of the system (Fig. 11). They designed a system comprising a CdS QD∕TiO2 nanorod photo-
anode and a ZnS/CdSe QD∕NiOx nanosheet photocathode for self-driven PEC water splitting,

Fig. 9 (a) SEM image of the Si∕TiO2 heterostructure nanotree arrays photoelectrodes, (b, c)
Schematic illustrations of the light absorption and charge transfer of Si∕TiO2 photoelectrodes
in unassisted water splitting reaction, and (d) the evolution of H2 and O2 with 2:1 stoichiometry
under simulated sunlight (1.5 suns) Reprinted with permission from Ref. 79. Copyright 2013
American Chemical Society.

Peerakiatkhajohn et al.: Review of recent progress in unassisted photoelectrochemical water splitting. . .

Journal of Photonics for Energy 012006-10 Jan–Mar 2017 • Vol. 7(1)



Fig. 11 (a) SEM images of CdS QD∕TiO2 nanorod photoanode (top) and CdSe QD/NiO nano-
sheet (bottom) photocathode (scale bar: 500 nm), (b) schematic representation of PEC device
configuration, (c) band diagram and charge transfer in heterojunction photoelectrodes, (d) ampero-
metric curves of CdS QD/TiO2 nanorod photoanode and CdSe QD/NiO nanosheet in 0.5 M
Na2SO4 electrolyte, (e) J–V curve of CdSQD∕TiO2 nanorod photoanode and CdSeQD/NiO nano-
sheet photocathode in unbiased water splitting, and (f) hydrogen and oxygen gases evolutions
and inset presents stability of the photocurrent under 90-min light illuminations. Reprinted with
permission from Ref. 179. Copyright 2014 American Chemical Society.

Fig. 10 SEM images of (a) n-p homojunction of Si microwire array (inset shows a zoomed-in
image of the SiO2 microwires), (b) FTO-coated n-p homojunction of Si microwire array, and
(c) cross-section of TiO2-coated n-p Si/FTO microwire array. (d) Current density versus potential
curves of pþ -Si∕FTO∕TiO2 and n-p Si∕FTO∕TiO2 microwire array photoelectrodes and
(e) amperometric curves of n-p Si∕FTO∕TiO2 microwire array photoelectrodes at 0 V versus
RHE under the dark and 1 sun light illumination conditions. Reprinted with permission from
Ref. 176. Copyright 2016, The Electrochemical Society.
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which delivered a maximum STH efficiency of 0.17%, comparable to natural photosynthesis.
Later, a system composed of dual nanowire photoelectrodes of p-InGaN/Si-InGaN was devel-
oped, where a STH efficiency of 2% at 0.6 V versus RHE and a high open circuit potential were
achieved under AM 1.5 G 1 sun illumination (Fig. 12).180 Nevertheless, this design requires
expensive and rare cocatalysts to drive the solar water splitting reaction. Therefore, other active
and cheaper semiconductors and cocatalysts for overall water splitting should be explored in
future studies.

4 Summary and Perspectives

In this review article, we provided an overview of a library of PEC system designs toward unas-
sisted solar water splitting. It is clear that the design of efficient unassisted PEC devices relies not
only on material design but also the integration of PEC configuration. In particular, the develop-
ment of semiconductors via novel nanostructure engineering, surface modification with exotic
element doping or cocatalyst loading, and innovative system design based on heterojunction
configurations are important strategies for improving light harvesting, charge separation, and
surface reaction kinetics. This brief review would deliver useful information for further construc-
tion and development of efficient unassisted PEC water splitting systems with high STH effi-
ciency, long-term stability, and low cost. For example, the stability and poor kinetics of water
splitting issues in the wireless integrated tandem system with dual light absorber configuration
should be addressed by employing earth abundant materials, protective layers, and morphology
engineering techniques. On the other hand, novel strategies to inhibit photocorrosion of the pho-
tocathode materials are urgently needed for efficient water splitting in a long-term period.
Additionally, the tandem system combining semiconductors with a PV device has a conflict
in terms of instability in aqueous electrolyte, high cost and complexity. Using DSSCs or
PSCs in tandem systems for unassisted water splitting demonstrates low cost and comparable
STH efficiencies, but the efficient light absorption and stable organic dyes for DSSCs and the
stability of perovskites should be considered when equipped in a PEC system.

Although numerous achievements have been obtained in recent years, it is still highly chal-
lenging to develop an efficient unassisted PEC water splitting system for practical applications.
Currently, the tentative STH goal for practical applications of the unassisted PEC water splitting
device is 10%. It is expected that some novel concepts of fully integrated PEC devices put for-
ward the breakthrough in solar hydrogen energy conversion and long-term stability. Notably, the
Z-scheme concept for unassisted PEC water splitting systems is promising for effective photon
utilization and efficient solar water splitting. However, there still remains significant room for the
improvement of this system for practical applications. It is also important to explore new active

Fig. 12 (a) STEM-HAADF image of a single Pt-InGaN nanowire and schematic of the p-InGaN
nanowire photocathode and n-Si substrate, in which connected directly in tunnel junction, (b) the
solar conversion efficiency of the dual-photoelectrodes as a function of applied bias under AM1.5G
1 sun illumination, I − V curve of the dual-photoelectrode device with the (c) photoanode
and (d) photocathode under chopped illumination. Reprinted with permission from Ref. 180.
Copyright 2015 American Chemical Society.
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and low cost cocatalysts that can efficiently promote the forward reactions for water splitting. To
this end, in-depth understanding of the mechanisms of unassisted PEC water splitting and the
strategies to boost charge transfer and separation for redox reaction is critically important to
develop an efficient solar water splitting system for more sustainable solar energy utilization.
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