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Abstract. Stellar map denoising and centroid positioning, which directly determine the post-
positioning accuracy of star trackers, are key technologies in stellar map processing. Due to the
influence of a complex starry sky background, there is often a large amount of noise in stellar
maps, which makes it difficult to accurately locate the stellar centroid. A stellar map processing
method based on dark channel denoising and continuous multiframe stellar map centroid posi-
tioning combined with centroid trajectory constraints is proposed. First, a dark channel noise
template is used for denoising, and the single-point and multipoint noises in the denoising result
are filtered. Second, in the process of stellar map positioning, if the maximum gray value of the
stellar is not unique, it is constrained by the previous stellar positioning result, an adaptive win-
dow is established, and the gray-scale centroid weighting method is used to locate the centroid.
Then, the star angular distance is used to analyze the precision of the centroid positioning.
Finally, the jitter frequency of the satellite platform based on the continuous multiframe centroid
positioning result is used to detect satellite attitude. The experimental results show that the per-
formance of dark channel denoising, which can solve many strip noise and background noise
problems in stellar maps, is better than that of the existing stellar map denoising method. The
centroid positioning results improves the star angular distance by 18.85 arc sec compared with
the Gaussian filter and by 8.03 arc sec compared with the global threshold segmentation method,
significantly improving the accuracy of stellar map centroid positioning and laying a foundation
for improving the star tracker positioning accuracy. A jitter frequency of 0.67 Hz was detected on
the ZiYuan3 satellite platform based on the centroid positioning results. It enriches the jitter
detection methods and provides a theoretical and technical basis for the design of future
high-resolution ground observation remote sensing satellite platforms and geometric accuracy
compensation. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the origi-
nal publication, including its DOI. [DOI: 10.1117/1.JRS.15.016519]
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1 Introduction

Star trackers have the advantages of high precision, good reliability, strong acquisition, and
tracking ability, which are key factors in determining whether a satellite can operate stably
in orbit.1–3 The measurement accuracy of the star trackers has a great influence on the pointing
accuracy and attitude stability of the satellite platform. The pointing accuracy and attitude sta-
bility of the satellite platform directly determine the uncontrolled mapping capability of the
remote sensing satellite. In the star tracker attitude control system, the star trackers determine
the orientation of the star tracker camera axis in the celestial coordinate system through a series
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of tasks such as stellar map shooting, centroid positioning, stellar map recognition, and attitude
calculation, to calculate the attitude of the spacecraft.4,5 As one of the main data transmitted by
the star trackers, stellar map can assist the postattitude calibration through stellar map recog-
nition and matching. Moreover, stellar map denoising and centroid positioning are the significant
technologies of star tracker attitude determination. The complex space environment leads to a
large amount of nonuniform noise in the stellar map shot by the star trackers. Stellar map denois-
ing is the premise of centroid positioning and the results directly determine the postattitude deter-
mination of the satellite sensors.6–8 Therefore, effectively mitigating noise and accurate centroid
positioning have become one of the important research areas of aerospace remote sensing
satellites in recent years.9,10

Currently, stellar map denoising methods can be roughly divided into two categories: stellar
map denoising based on filtering or threshold segmentation method. Stellar maps based on filter-
ing denoising8,11 mainly include mean filtering, median filtering, Gaussian low-pass filtering,
and Wiener filtering. Filtering denoising methods can mitigate the speckle noise in natural
images better. However, the targets in the stellar maps are distributed in a spot-like pattern, which
is similar to the noise distribution.12 The stellar information is missing in the process of the
denoising based on filtering denoising methods. Obviously, these methods are applied to the
noise mitigation of stellar maps and they have great limitations. The threshold segmentation
method13 mitigates the noise in the stellar map through threshold constraints. Usually, the aver-
age value of the energy of each pixel in the stellar map and the median error of n times are used as
the global threshold (n is generally 3 to 5). The edge of the stellar map obtained by the ZiYuan3
(ZY-3) satellite platform is strongly exposed, and it carries obvious band noise, as shown in
Fig. 1. At present, there is no global threshold suitable for all stellar maps. Thus, threshold seg-
mentation method is difficult to mitigate the complex noise carried by the stellar maps. Then how
to mitigate the edge band noise in the stellar map while improving the processing efficiency is an
urgent problem to be solved in the postattitude of the satellite platform attitude.

In the field of centroid positioning, experts and scholars have also carried out much research
and have achieved certain research results. Centroid positioning methods mainly include gray-
scale weighting,14 Gaussian surface fitting,15,16 and ellipse fitting.17 The relationship between
pixel values and weights for centroid positioning is considered in the gray-scale weighting
method. These methods are relatively simple. The Gaussian function is used in the Gaussian
surface fitting method to simulate the point spread function in the imaging process, which is
used to locate the centroid of the stellar field. The stability is good, but the calculation is rel-
atively complicated. In the ellipse fitting method, the stellar field is treated as an ellipse. The
morphology is adopted to extract the edge of the stellar field, and then to locate the centroid
through the least squares fitting. Unfortunately, this method is not stable. Motivated by this, how
to improve the method of centroid positioning is very significant. From the perspective of atti-
tude data processing, improving the denoising results of the stellar map, improving the centroid
positioning accuracy, and creating favorable conditions for the postattitude processing of the
satellite platform will have important theoretical significance and application value for improv-
ing the geometric positioning accuracy of satellite images.

Fig. 1 Original stellar map.

Zhu et al.: Stellar map centroid positioning based on dark channel denoising and feasibility. . .

Journal of Applied Remote Sensing 016519-2 Jan–Mar 2021 • Vol. 15(1)



ZY-3 is China’s first civilian high-resolution stereo surveying and mapping satellite. In terms
of attitude equipment, the ZY-3 satellite platform carries three star trackers and four gyro
instruments.18–20 The star trackers and the gyros jointly integrate the attitude determination sys-
tem. In order to further improve the postattitude processing accuracy of the ZY-3 satellite plat-
form, the stellar map obtained by the star tracker, which is installed on the ZY-3 satellite
platform, is studied in this paper. The problems of stellar map denoising and centroid positioning
accuracy are mainly solved. Meanwhile, the feasibility of the centroid change in the continuous
multi-frame stellar map for the jitter detection of satellite platform is further analyzed. These
works will accumulate a certain technical reserve for the subsequent mitigation of attitude jitter
and posture accuracy improvement.

2 Materials and Methods

For the stellar map obtained from ZY-3, the stellar map noise information mainly includes sys-
tem background noise and random noise. Given the noise characteristics of stellar maps and
stellar positioning accuracy, stellar map denoising based on dark channel and the continuous
multiframe stellar map centroid positioning combined with centroid trajectory constraints is put
forward in this paper. Finally, the jitter frequency of the satellite platform based on the continu-
ous multiframe centroid positioning results is analyzed. Figure 2 illustrates the overall flowchart
of the method in this paper.

2.1 Stellar Map Denoising Based on Dark Channel

The noise of stellar maps to have a certain correlation and weak difference due to the impact of
space environment changes, hardware, and current.

The special integrated structure and external environment of the active pixel sensor (APS)
star tracker show obvious strip noise and a large amount of nonuniform noise in the vertical
direction of the stellar map. This noise can be considered systematic background noise because
of the slight variations in continuous multiframe stellar maps. Moreover, regardless of the band
noise, the system background noise is much smaller than the pixel gray value of the stellar field.
Consequently, the dark channel noise template of the APS stellar map was extracted according to
the minimum pixel value of the sequence stellar map. Then the noise information in the stellar
map will be greatly mitigated. For an arbitrary stellar map J, the mathematical description of the
dark channel noise template extraction is given as

EQ-TARGET;temp:intralink-;e001;116;320InoiseðxÞ ¼ min
y∈ΩðxÞ

�
min

c∈fJ1;J2;: : : ;Jng
JcðyÞ

�
; where c ¼

�
R_star
S∕T

∕t
�
; (1)

where Inoise represents the extracted dark channel noise template information, Jc represents the
stellar map sequence,ΩðxÞ represents a window centered on pixel x, R_star is the diameter of the
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Fig. 2 The overall technical flowchart of this paper.
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star, t is the stellar map exposure time, S is the displacement of the star, T is the accumulated time
within displacement S, and d·e represents rounding up.

As shown in Fig. 3, the number c of stellar map frames exposed in time T that is required for a
star spot to move out of a stellar map was calculated. The dark channel noise template of the
sequence stellar maps was obtained by calculating the minimum value of each pixel of the c
frame stellar map. The difference between the sequence stellar map and the dark channel noise
template was determined to mitigate the noise. Then the continuous multiframe stellar maps are
denoised.

The stellar maps based on dark channel denoising remain as single-point or multipoint noise.
This noise consumes storage resources and affects the efficiency and accuracy of centroid posi-
tioning. In order to accurately locate the stellar centroid, the residual noise of the stellar map was
filtered again using the constraint of the target area. The stellar map is handled through the use of
dark channel denoising. Then the result is converted into a binary image. In the stellar map, the
stellar and noise are marked by eight connected domains. When the target area is larger than the
threshold value δ, it is regarded as a stellar field. Otherwise, it is regarded as noise. Eventually,
stellar map noise is almost mitigated.

2.2 Stellar Map Centroid Positioning Combined with Centroid Trajectory
Constraints

The traditional gray-scale weighting is to use each stellar as a primitive to locate its centroid
coordinates. It is not only susceptible to interference from background noise, but also can be
applied to the continuous multiframe stellar map centroid positioning. The maximum energy
value of each stellar field is not unique, resulting in lower centroid positioning accuracy. In this
section, the continuous multiframe stellar map is processed based on the dark channel denoising.
The initial position of the centroid coordinate is constrained by centroid tracking to ensure the
centroid positioning accuracy. A more intuitive display is shown in Fig. 4.

First, each stellar coordinate of the maximum energy value in every image is determined, an
adaptive window with the maximum pixel energy as the center is established, and the gray-scale
weighting method is adopted to locate the centroid position as the initial value. Second, the
centroid of the stellar in the sequence image is determined. When the maximum energy value
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Fig. 3 Schematic diagram for calculating stellar map noise.

Fig. 4 Centroid positioning combined with centroid trajectory constraints.
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of a stellar exists in multiple pixels, the position of the previous stellar centroid is used to constrain
the center of the adaptive window, and then the gray-scale weighting method is used to deter-
mine the stellar centroid, improving the problem that multiple maximum energies in the stellar
affect the centroid positioning. The gray-scale weighting function of the step is described as

EQ-TARGET;temp:intralink-;e002;116;687

8>>><
>>>:
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In Eq. (2), ðx0; y0Þ is centroid coordinates, n is the size of the window, ðxi; yiÞ is the coordinate of
the i’th pixel, and pðxi; yjÞ is the gray value of the i’th pixel.

2.3 Stellar Centroid Positioning Accuracy Evaluation

From a theoretical point of view, the diagonal distance calculated by any two stars in the nav-
igation star catalog is equal to the diagonal distance calculated by the corresponding observation
stellar coordinates, as shown in Fig. 5. The diagonal distance calculated in the navigation star
catalog is regarded as the theoretical true value, and the observed diagonal distance is compared
with the theoretical true value to evaluate the centroid positioning accuracy of the stellar map.

Suppose ðαi; δiÞ and ðαj; δjÞ are the right ascension and declination coordinates of the stars
with i’th and j’th, respectively, then the mathematical description of the diagonal distance ρij
between them is as follows:

EQ-TARGET;temp:intralink-;e003;116;454ρij ¼ arccos

 "
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sin αi cos δi

sin δi

#T" cos αj cos δj
sin αj cos δj
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After the two stars are imaged by the star tracker, the coordinates in the stellar map are ðxi; yiÞ
and ðxj; yjÞ. The diagonal distance of the observed star is calculated based on the position-
ing result of the stellar centroid. The angular distance ρ 0

ij can be calculated by the following
equations:
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where x0, y0, and f are azimuth elements in the star tracker.
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Fig. 5 Diagonal distance between navigation star and observation star.
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2.4 Jitter Detection Based on the Continuous Multiframe Centroid
Positioning

The area array camera of star trackers on the satellite platform has a short exposure time and
records all the stellar information in the field of view. Theoretically, if the orbiting satellite plat-
form is in a stable condition, the trajectory of the stellar in the image should be a straight line in
a short time. In fact, the trajectory is not linear due to jitter, which is caused by the satellite
platform in orbit. The proposed centroid positioning method is used to locate the stellar centroid
coordinates and the stellar coordinates are calculated in continuous multiframe stellar maps.
Then the centroid trajectory is obtained. The stellar trajectory recorded in the stellar map is
approximately a circular arc, so the unary quadratic equation is used to fit the trajectory. On
the basis of trajectory fitting, the residual error between the true trajectory of the stellar and
the fitted trajectory is calculated. According to the distribution of the residual waveform, a trigo-
nometric function is used to fit the displacement residuals, and a fitting function model is con-
structed in the following equation:

EQ-TARGET;temp:intralink-;e006;116;560fðxÞ ¼ a cosð2πωxþ bÞ; (6)

where a is the amplitude, w is the frequency, and b is the primary phase. Based on the principle
of least squares, the frequency and amplitude of attitude jitter are obtained by iterative solution.
According to Eq. (6), the feasibility of centroid positioning in satellite attitude jitter detection
can be tested.

3 Experimental Results and Analysis

3.1 Experimental Data

In order to verify the denoising effect of the proposed method that is applied to the ZY-3 stellar
map, many orbit stellar maps acquired from the ZY-3 satellite platform are used to analyze the
denoising stability and centroid positioning accuracy. In this experiment, orbital 000381 and
016891 stellar maps were randomly selected as the experimental data. Stellar maps were taken
on February 3, 2012, and January 24, 2015. The size of each stellar map is 1024 pixels ×
1024 pixels. The technical index of the APS star trackers on the ZY-3 satellite platform is shown
in Table 1, where the stellar map exposure time is 250 ms and the image output frequency is 2 Hz
by default.

Table 1 Key parameters of ZY-3 star tracker.

Index Parameters

Focal length 43.3 mm

Principal point 512, 512

Area-array image size 1024 × 1024

Field angle 20 deg× 20 deg

Pixel size 15 μm × 15 μm

Exposure times 125, 200, 250, 500 ms are tunable

Output frequency 2 or 1.66 Hz can be selected

Optical pointing precision 5 arc sec (3σ)

Update frequency 4 Hz
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3.2 Experimental Analysis

In the experiment, these stellar maps were acquired from different orbits, as shown in Fig. 6.
Obviously, both on the same and different orbital stellar maps, the exposures on the left are
relatively strong and unstable, especially the bottom left, which presents the periodic changes.
The energy value of the background noise (including dead pixels) is at least over 30, the highest
is more than 90, and the bottom left corner area floats larger. Therefore, the background noise of
the stellar map almost has common features based on a large number of stellar map noise infor-
mation statistics. More explicit feature descriptions such as band noise, exposure intensity, and
the stellar positioning changed, particularly the gray value of background noise, is much lower
than that of the stellar field. Motivated by this, the background noise template based on dark
channel is proposed.

In the calculation of the dark channel background noise template, the time of all stars move
out of the position of the first stellar map, which is first calculated. Then the number of stellar
map frames acquired by the star tracker is counted. In this paper, the number of stellar map
frames c is 6. The minimum gray value of each pixel in these stellar maps is taken out and
stored in a two-dimensional matrix template. This is the dark channel noise template. Orbital
000381 dark channel noise template and its three-dimensional (3D) view visualization are shown
in Fig. 7.

Aiming at characterizing the noise information, the dark channel noise template is used to
mitigate the stellar map obtained by APS. The system noise is well mitigated and the band noise
is obviously weakened based on the dark channel noise template processing. Meanwhile, the
unevenness of the center and edge regions of the stellar map is also improved. In order to further
analyze the effect of the dark channel noise template on the denoising of the stellar map, the star

Fig. 6 Original stellar map: (a) orbital 000381 stellar map and (b) orbital 016891stellar map.

Fig. 7 Dark channel noise template and its 3D view visualization.
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in the stellar map after denoising is partially enlarged, as shown in Fig. 8. It can be seen from
the result that the radius of the spot has not changed, which ensures the reliability of the spot,
improves the signal-to-noise ratio of the stellar map, and provides a guarantee for further improv-
ing the center positioning accuracy of the stellar field.

In addition, the Gaussian filtering method and the global threshold method are used to com-
pare the effect of the noise mitigation. For example, one of the frame stellar maps is randomly
selected to present. The results including the Gaussian filtering, global threshold method, and the
dark channel denoising are shown in Fig. 9.

Figure 9 intuitively shows that the stellar map is denoised by the Gaussian filtering
method, which smooths the whole stellar map. The noise is not removed effectively and the
gray value of the star point is weakened. When the global threshold method is used to mitigate
the noise, the edge band noise is still obvious and speckle noise remains. During the process
of global threshold method denoising, it needs to calculate the global threshold of each frame
stellar map, which has poor generalization. In contrast, the denoising method proposed in this
paper can mitigate the band noise and background noise in the stellar map effectively and has
good expansibility.

In order to further analyze the performance of the stellar map denoising method, centroid
positioning combined with centroid trajectory constraints is adopted to evaluate and analyze
the effectiveness of the stellar map denoising method. Furthermore, stellar maps acquired
from the same or different orbits are used in this experiment. The star diagonal error results
of the different orbits using different filtering methods are given in Fig. 10. In Fig. 10, the X
axis represents the number of diagonal distances between any two stars in the stellar map, and
the Y axis represents the error of the angular distance between any two stars in the navigation
star catalog.

It can be found from different orbital stellar maps that the star diagonal error is signifi-
cantly reduced based on the dark channel denoising method. This comparative experiment can
indicate that the background noise is effectively mitigated and the extraction accuracy of stel-
lar centroid is also improved. In addition, the star diagonal error is mostly concentrated near

Fig. 8 Comparison of stellar map before and after noise removal: (a) before noise mitigation;
(b) after noise mitigation; (c) partial zoom before noise mitigation; and (d) partial zoom after noise
mitigation.
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0 arc sec, and the individual star diagonal error is relatively larger. There is a jump phenome-
non in the star diagonal result. This jump phenomenon may be related to the exposure inte-
gration time charge transfer error, stellar spots of different magnitudes, distortion, or other
factors. Orbit 000381 diagonal distance errors with time were counted. In this result, all the
diagonal distances were sorted. The star angular distance results are compared in Fig. 11,

Fig. 9 Comparison of noise mitigation results based on different methods (the denoising result is
on the left, the 3D view is on the right): (a) original stellar map; (b) Gaussian filtering method
denoising; (c) global threshold method denoising; and (d) dark channel denoising.
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which are handled through the use of Gaussian filtering, global threshold segmentation, and
the dark channel denoising method.

As shown in Fig. 11, the distribution range of the star angular distance error based on
Gaussian filtering denoising is ½−96.03;105.37 arc sec�], the distribution range of the star angu-
lar distance error based on global threshold segmentation denoising is ½−74.93; 77.27 arc sec�,
and the distribution range of the star angular distance error based on dark channel denoising is
½−49.69; 39.99 arc sec�. The standard deviation of the star angular distance denoised by
Gaussian filtering is 31.38 arc sec, the standard deviation of the star angular distance denoised
by the global threshold segmentation method is 20.56 arc sec, and the standard deviation of the
star angular distance with dark channel denoising is 12.53 arc sec. The range of the star angular
distance error floating range of the proposed method is obviously better than those of the
Gaussian filtering and global threshold denoising methods; evidently, the method proposed
in this paper can improve the extraction accuracy of the stellar map centroid and further improve
the positioning accuracy of the star tracker.

The method proposed in this paper can estimate the background noise of the stellar map
according to the external environment and the changes of the response device, so that the denois-
ing method has good timeliness and universality. At present, it has been fully applied in the ZY-3
application system and can be popularized and applied in other satellite stellar map preprocess-
ing in the future. Meanwhile, the change of the stellar centroid positioning with higher brightness
is counted in the experiment, and the jitter frequency of the satellite platform is analyzed. The
changes in the centroid positioning of two stars are shown in Fig. 12.

In Fig. 12, it can be roughly found that the stellar centroid has changed and there is a certain
regularity. The motion trajectories in the X and Y directions of the stellar centroid are fitted by the
unary quadratic equation and the fitting residuals are calculated. The least squares method is used
to fit the data residuals. The fitting function can be determined by prior knowledge and the
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Fig. 10 Star diagonal error results of different orbit-acquired stellar maps: the result of (a) orbital
000381 and (b) orbital 016891.

Fig. 11 Tar angular distance error results: (a) Gaussian filtering denoising; (b) global threshold
denoising; and (c) proposed method.
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undetermined coefficients in the fitting function are determined by the least square method.
However, the real jitter state of the satellite platform is unknown. In order to evaluate the fitting
effect more objectively, the sum of the square due to error is used to analyze the fitting result in
the experiment. In this evaluation method, the smaller the sum of the square due to error is, the
better the fitting results are. Fast Fourier transform is used to analyse the residual and the fre-
quency, amplitude, initial phase, and initial value of constant of the residual curve can be
obtained, respectively, as shown in Table 2.

The ZY-3 satellite platform was detected to have a jitter frequency of 0.67 Hz. The amplitude
in the X direction is about 2 pixels and the amplitude in the Y direction is about 1 pixel, as shown
in Fig. 13. This jitter frequency has a relatively small effect on the intersection error of the stereo-
scopic image compared to the 2.1-m resolution remote-sensing image acquired by ZY-3, and
therefore, has not been compensated in actual production. Jitter detection based on the stellar
map centroid change can be realized without any interference from the meteorological condi-
tions. The results of jitter detection based on the stellar map are basically consistent with the
results based on a multispectral image. This also verifies that the existence of jitter in the ZY-3
platform with a frequency range of 0.6 to 0.7 Hz.

Fig. 12 Stellar centroid trajectory: (a) 6th stellar and (b) 10th stellar.

Table 2 Stellar modeling results and accuracy.

X direction Y direction

6th stellar f ðxÞ ¼ a � cosðw � x þ bÞ f ðxÞ ¼ a � cosðw � x þ bÞ

Coefficients: Coefficients:

a ¼ 2.381 a ¼ 1.122

w ¼ 0.67 w ¼ 0.67

b ¼ 1.153 b ¼ 0.9951

Modeling accuracy (pixel) 1.36 0.57

10th stellar f ðxÞ ¼ a � cosðw � x þ bÞ f ðxÞ ¼ a � cosðw � x þ bÞ

Coefficients: Coefficients:

a ¼ 2.611 a ¼ 0.5952

w ¼ 0.67 w ¼ 0.67

b ¼ 1.46 b ¼ 1.47

Modeling accuracy (pixel) 2.15 0.40
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4 Conclusion

In this paper, the jitter frequency of a satellite platform based on continuous multiframe centroid
positioning results is proposed. The content mainly includes stellar map denoising based on dark
channel and the continuous multiframe stellar map centroid positioning combined with centroid
trajectory constraints. The experiment uses stellar maps of ZY-3 as an example, and the denois-
ing effect and positioning accuracy of the stellar centroid are increased. It has laid a certain
foundation for improving the sensitivity of satellite platform jitter detection. The specific con-
clusions are as follows.

1. By comparing the results of the stellar map and 3D visualization results based on
different denoising methods, the dark channel denoising method clearly and effec-
tively solves the problem of stripe noise and background noise in stellar maps.
Compared with the Gaussian filtering denoising method, the star angular distance
error is improved by 18.85 arc sec, and compared with the global threshold segmen-
tation method, the star angular distance error is improved by 8.03 arc sec. The exper-
imental results show that the proposed method can improve the accuracy of centroid
positioning and provide technical support for the postpositioning accuracy of star
trackers.

2. In this paper, the feasibility of jitter detection of the ZY-3 satellite platform based on the
centroid change in the continuous multiframe stellar map is the first to be analyzed.
A jitter frequency of 0.67 Hz from the ZY-3 satellite platform was detected. The ampli-
tude in the X direction is about 2 pixels, and the amplitude in the Y direction is about
1 pixel. This has little effect on the intersection error of the ZY-3 satellite image.
Therefore, it is not necessary to compensate for jitter in actual production.

Fig. 13 Residual fitting results of stellar centroid positioning changes: (a) X residual fitting of the
6th stellar; (b) Y residual fitting of the 6th stellar; (c) X residual fitting of the 10th stellar; and (d) Y
residual fitting of the 10th stellar.
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In the future, satellite sensors and the agility of the satellite platform will be improved.
The influence of jitter on the geometric accuracy and mapping accuracy of satellite images will
become increasingly significant. An integrated multiple jitter detection method can be devel-
oped, providing strong technical support for the stability of the satellite platform.
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