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Abstract. A hyperspectral image (HSI) contains hundreds of spectral bands, which provide
detailed spectral information, thus offering an inherent advantage in classification. The success-
ful launch of the Gaofen-5 and ZY-1 02D hyperspectral satellites has promoted the need for
large-scale geological applications, such as mineral and lithological mapping (LM). In recent
years, following the success of computer vision, deep learning methods have shown their ad-
vantage in solving the problem of hyperspectral classification. However, the combination of deep
learning and HSI to solve the problem of geological mapping is insufficient. We propose a new
3D convolutional autoencoder for LM. A pixel-based and cube-based 3D convolutional neural
network architecture is designed to extract spatial–spectral features. Traditional and machine
learning methods are employed as competing methods, trained on two real hyperspectral data-
sets, and evaluated according to the overall accuracy, F1 score, and other metrics. Results indi-
cate that the proposed method can provide convincing results for LM applications on the basis of
the hyperspectral data provided by the ZY-1 02D satellite. Compared with traditional methods,
the combination of deep learning and hyperspectral can provide more efficient and highly accu-
rate results. The proposed method has better robustness than supervised learning methods and
shows great promise under small sample conditions. As far as we know, this work is the first
attempt to apply unsupervised spatial–spectral feature learning technology in LM applications,
which is of great significance for large-scale applications. © The Authors. Published by SPIE under a
Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JRS.15.042610]
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1 Introduction

As one of the hottest topics in the remote sensing field, hyperspectral technology plays a sig-
nificant role in Earth observation. Hyperspectral image (HSI) contains hundreds of spectral
bands, which provide detailed spectral information, and thus has an inherent advantage in
geological applications. Generally, most minerals and rocks have obvious spectral characteristics
in the range of 400 to 2500 nm.1 Spectral analysis of typical rocks and minerals and building a
spectral database establish a good foundation for lithological mapping (LM).2,3 Different
geological bodies and formations, which vary in terms of mineral composition, weathering char-
acteristics, alteration, and tectonic setting, also lead to a different spectral signature in hyper-
spectral data.4,5 Therefore, richer spectral information and higher spatial resolution correspond to
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its greater advantage in expressing of different types of geological bodies. Although geological
mapping based on airborne hyperspectral has been performed for many years, the high cost of
data acquisition has made the application and promotion of this technology more difficult.
Benefiting from the development of hyperspectral satellite technology, Gaofen-5,6,7 ZY-1
02D8 has been successfully launched, thus providing sufficient data guarantee for large-scale
LM.9 Both Gaofen-5 and ZY-1 02D have a width of 60 km, a spatial resolution of 30 m, and
hundreds of spectral bands, which are helpful for developing accurate, efficient, and low-cost
geological mapping applications.

In the past few decades, various methods based on HIS have been proposed for geological
mapping. Traditional lithology and mineral mapping methods can be summarized into three
categories: image enhancement methods, spectral feature analysis methods, and object-ori-
ented-based methods. Image enhancement methods such as minimum noise fraction rotation
(MNF),10,11 principal component analysis (PCA),12 and band ratio13,14 method aim to enhance
the relevant feature of litho-units through transformation processing such as dimensionality
reduction. Such methods are simple and effective, but they are mainly used to enhance the
expression of lithology-related features and cannot directly achieve classification. Spectral fea-
ture analysis methods can be further subdivided into two types, spectral feature extraction (SFE)
methods15–17 and spectral matching (SM) methods.18,19 As a method with clear physical mean-
ing, the SFE method is based on the analysis of the diagnostic spectral features of typical mineral
or litho-units and artificially identifies rules to achieve LM. However, because the algorithm
mainly uses manual identification rules to implement LM, it is less efficient when applied
to large-scale, multiple targets, and complex scenarios.20 In the definition of the SM methods,
rock types are distinguished by comparing the consistency of the target spectrum with that of the
reference spectrum. Typical SM methods, such as spectral angle mapper (SAM)21,22 and spectral
information divergence (SID)23 are the most commonly used. The unmixing method can also be
regarded as an extension of this type of method.24 Compared with the SFE methods, it is easier to
implement, but it is not sensitive enough to minor diagnostic spectral signatures,25 and the choice
of reference spectrum is also important to accuracy. Object-wise methods should apply super-
pixel segmentation,26,27 such as simple linear iterative clustering to the target images. Although
this kind of method overcomes the salt-and-pepper effect to some extent, the recognition accu-
racy is still affected by the initial super-pixel precision and the insufficient utilization of spectral
features. The above-mentioned traditional methods have their own advantages, but the problems
of insufficient spatial–spectral feature combination, weak feature extraction ability, and low effi-
ciency are difficult to avoid.

With advances in machine learning technology, a series of learning-based methods have been
proposed for LM, such as support vector machine28,29 and random forest.30 Compared with tradi-
tional methods, the learning-based methods can capture more effective features through super-
vised learning, thereby overcoming the problem of artificial threshold setting in complex scenes.
In recent years, deep learning technology has achieved remarkable progress in hyperspectral
application.4,31,32 However, few application cases of LM using deep learning methods combined
with HSI. As shown in Refs. 27 and 33, a convolutional neural network (CNN) was used to
address LM problems based on HSI in the supervised scenario, thereby providing a good case
for the application of deep learning in LM. Considering that the accuracy of supervision-based
classification algorithms is constrained by the amount and representativeness of training samples
and that applying locally trained models to large-scale and complex scenarios is difficult, we
believe that using self-learning methods to solve LM problem is a better choice. Most recently,
the autoencoder-like architecture has been developed in hyperspectral unmixing and became a
new trend in self-learning methods. In Refs. 34–36, denoising and sparseness autoencoder are
introduced to estimate the abundance of endmembers. In Refs. 37 and 38, the 3D-CNN autoen-
coders are further employed for hyperspectral unmixing to improve the classification accuracy.
Inspired by these autoencoder applications, we introduce a novel end-to-end 3D convolutional
autoencoder for LM. The encoder with pixel-based or cube-based CNNs is proposed to explore
the spatial–spectral contextual features of HSI, and the decoder is designed to estimate the end-
member of the litho-units. The novelty of this method lies in the use of a 3D autoencoder, which
implements LM through self-learning and avoids the use of large training sets. In our experi-
ments, SAM, SID, and a simple CNN network are used as competing methods on the same data
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set and trained using the same parameter settings as the proposed method. Overall accuracy,
F1-score, and other metrics are employed to evaluate the performance. As far as we know, this
work is the first attempt to apply unsupervised spatial–spectral feature learning technology in
LM application based on HSI.

The remainder of this paper is organized as follows: The proposed method is described in
Sec. 2. The working area and data are described in Sec. 3. Experiments and results are presented
in Sec. 4, and the conclusion and discussions are presented in Sec. 5.

2 Proposed Methods

2.1 Problem Formulation

Geological bodies and formations formed in diverse geological environments show differences
in mineral composition, weathering characteristics, and alteration, thereby leading to distinct
spectral signatures in hyperspectral data. Reasonably, the LM problem can be considered as
an unmixing problem, which aims to estimate the proportions of each spectral endmember that
representing certain litho-units. The formula can be expressed as

EQ-TARGET;temp:intralink-;e001;116;525M ¼ ΨðEAÞ þ N; (1)

in whichM is indicative of a mixture pixel of reflectance, E represents the endmembers of litho-
units, A denotes their proportions, N is the additive vector, and Ψ represents the implicit non-
linear function applied to the linear transform. The problem investigated in this paper is the
estimation of the proportion matrix A by given the endmembers matrix E. It is worth noting
that the proportion non-negative and sum-to-one constrain are two physical constraints39 that
restrict the model from estimating the correct result following the physical rules. The former
demonstrates all elements of the estimation result, which indicates that the proportions of each
litho-unit must be nonnegative, and the latter requires that the sum of proportion in each pixel
equals one.

Autoencoder is an unsupervised training network composed of an encoder and a decoder,
which can learn the data patterns and reconstruct input information with a minimum reconstruc-
tion error. Under certain constraints, the decoder part can be regarded as a reconstruction of HSI
based on pure litho-units matrix and their proportions matrix. Hence, given the spectral end-
members of typical litho-units as the weight of the reconstructed layer, the proportion matrix
of each litho-unit can be estimated as the activations of the last hidden layer for each input
spectrum.

2.2 3D-CNN Autoencoder

Compared with other remote sensing data, hyperspectral data contains richer information in
channel dimension. Thus, we used 3D convolution in hyperspectral data processing, which can
be expressed as

EQ-TARGET;temp:intralink-;e002;116;229vxyzlf ¼ σ

 X
m

XHk−1

h¼0

XWk−1

w¼0

XCk−1

d¼0

whwd
lfmv

ðxþhÞðyþwÞðzþdÞ
ðl−1Þm

!
þ blf; (2)

in which vxyzlf represents the value of a unit at position ðx; y; zÞ on the f’th feature map in the l’th
layer;m indexes the sets of the feature map in the preceding layer ðl − 1Þ;Hk,Wk, Ck denote the
height, width, and channel of the kernel, respectively; whwd

lfm stands for the weight at position
ðh; w; dÞ connected to the f’th feature map; and b and σ are the bias and the activation function,
respectively.

Inspired by the application of autoencoder for spectral unmixing problems, we introduce a
pixel-based 3D convolutional autoencoder (PBA) and a cube-based 3D convolutional autoen-
coder (CBA). The main architectures of PBA and CBA are the same, but the inputs are different.
The PBA takes a spectrum vector at each pixel as input, whereas the CBA takes the hyperspectral
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cube ðS × S × CÞ as input data to obtain joint spatial–spectral information, where S denotes the
spatial window size and C is the number of spectral bands. In theory, the size of S is not fixed, it
can be set according to the size of the data. In this case, S is set to 5. Generally, as an end-to-end
network, the input and output of the autoencoder are the same, as in PCA. However, the output of
the CBA is the central pixel of the input hyperspectral cube, as shown in Fig. 1. Similarly, the
number of convolutional layers of the model’s encoder is also changeable. The focus of this
paper is to use the autoencoder to solve the LM problem, which is why a general encoder archi-
tecture is adopted in this case. Considering that several high-computational-cost fully connected
layers (FC layers) are present in the network, we adopted five 3D convolutional layers as the
encoder in this case, which can maintain sufficient feature extraction capabilities without
increasing the computational burden as much as possible.

As shown in Fig. 2, an encoder with five 3D convolutional layers is designed to extract the
spatial and spectral information of HSI. For the decoder part, we first use two FC layers to
increase the nonlinearity of the model, and then use another FC layer to reconstruct the input
spectrum. To follow the non-negative and sum-to-one constrain mentioned earlier, the absolute
transformation (Abs in Table 1) and softmax activation is added before the final FC layer of the
decoder. The detailed parameters of CBA are shown in Table 1.

2.3 Comparison Model

SAM and SID, which are two traditional spectral feature analysis methods, are employed as
comparison methods. A supervised model with a basic CNN architecture is also used to evaluate
the performance of the proposed model. Through a comparison of the angle difference between
the spectrum of each pixel and the pure litho-units, the closest one is selected as the classification
result. For the supervised model of deep learning in this paper, we use a basic CNN structure to
obtain the probability of each category. The architecture is shown in Table 2. The network is

M

Encoder Decoder

E
A

M

input 

Central 
pixel

loss function (SID)

loss function (SID)

HSI

CBA

PBA

input

H×W× C

HSI
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1×1× C

1×1× C

Reconstructed
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Fig. 1 Schematic diagram of autoencoder with cube-base and pixel-based input spectrum.

Feature layer 3D  Conv FlattenHSI cube

3×3×(C-2)
1×1×(C-4) 1×1×(C-6)

1×1×(C-8) 1×1×(C-10)

Flatten

abs

A A

C

256
5×5×CH×W×C

3×3×33×3×3

CubeHSI

1×1×3 1×1×31×1×3

f f f ff =32 =64 =128 =256=16

Fig. 2 Architecture of the proposed 3D-CNN autoencoder.
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mainly composed of two convolution layers and two FC layers. The former is responsible for
extracting the image feature and the latter is responsible for flattening the feature to 1D.
Moreover, the dropout technique is utilized to prevent overfitting.

2.4 Loss Function

We use SID as the loss function of our unsupervised methods and use categorical cross-entropy
as the supervised methods’ loss function. SID measures the difference between the input spec-
trum vector and the reconstructed spectrum by the decoder. It is a measure of the similarity
evaluation of two spectral curves by using the relative entropy of spectral information. The
SID of input spectrum x and reconstructed spectrum y can be expressed as

EQ-TARGET;temp:intralink-;e003;116;353SIDðx; yÞ ¼ DðxkyÞ þDðykxÞ: (3)

Cross-entropy is used to evaluate the difference between the predicted result and the refer-
ence ground truth (GT) in the supervised methods. The formula can be expressed as

EQ-TARGET;temp:intralink-;e004;116;297L ¼ 1

N

X
i

Li ¼ −
1

N

X
i

XM
c¼1

yic logðpicÞ; (4)

Table 2 The architecture of the basic CNN model.

Model Layer Kernel size Filters Activation Feature size

CNN Conv3D-1 (3, 3) 32 ReLU (5, 5, 32)

Conv3D-2 (3, 3) 64 ReLU (5, 5, 64)

Dropout (0.25) — — — (5, 5, 64)

Flatten — — — (1600,)

Dense-1 — 60 ReLU (60,)

Dropout (0.5) — — — (60,)

Dense-2 — 5 Softmax (5,)

Table 1 The architecture of the proposed CBA model.

Model Layer Kernel size Filters Activation Feature size

CBA (5 × 5 × C) Conv3D-1 (3, 3, 3) 16 ReLU (3, 3, C-2, 16)

Conv3D-2 (3, 3, 3) 32 ReLU (1, 1, C-4, 32)

Conv3D-3 (1, 1, 3) 64 ReLU (1, 1, C-6, 64)

Conv3D-4 (1, 1, 3) 128 ReLU (1, 1, C-8, 128)

Conv3D-5 (1, 1, 3) 256 ReLU (1, 1, C-10, 256)

Flatten — — — (C-10)×256

FC-layer-1 — 256 ReLU 256

FC-layer-2 — N — N

Abs — — Softmax N

FC-layer-3 — C ReLU C
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in which N represents the number of samples, M represents the number of categories, and yic is
an indicator variable (0 or 1), which is 1 if the category c is the same as the category of
sample i and 0 otherwise. pic denotes the predicted probability that the sample i belongs to
category c.

2.5 Evaluation

The performance of the proposed model is quantitatively measured according to the agreements
and differences between the predicted results and GTs. The most common metrics overall accu-
racy, recall, F1-score, and precision were used as the evaluation index to evaluate the compared
methods. For reference, a general analysis of the accuracy metrics for classification tasks can be
found in Ref. 40. These metrics are defined as follows:

EQ-TARGET;temp:intralink-;e005;116;591Precision ¼ TP
TPþ FP

; (5)

EQ-TARGET;temp:intralink-;e006;116;537Recall ¼ TP
TPþ FN

; (6)

EQ-TARGET;temp:intralink-;e007;116;504Overall Accuracy ¼ TPþ TN
TPþ TN þ FPþ FN

; (7)

EQ-TARGET;temp:intralink-;e008;116;471F1 score ¼ 2
1

Recall
þ 1

Precision

; (8)

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false negative,
respectively.

3 Working Area and Data

3.1 Working Area

The study area is located in Liuyuan town, northwestern Gansu Province, which is located in the
middle east of the Dongtianshan-Beishan metallogenic belts, the southern margin of the Central
Asian Orogenic Belt. In its long history of geological development, the Liuyuan area has expe-
rienced complex tectonic movements and magmatic activities and has excellent metallogenic
conditions. The geological composition of the study area is relatively simple. According to the
1:50000 geological map, the main litho-units of the working area can be divided into five cat-
egories. Hercynian acidic intrusive rocks with different compositions occupy 50% of the study
area. The Ordovician Huaniushan Formation is the main strata in the study area, which is mainly
composed of plagioclase, basalt, and metamorphic sandstone. However, due to the small scale
of the reference geological map, it cannot accurately reflect the edge of the geological bodies.
With the aid of the high spatial-resolution and high spectral-resolution of ZY-1 02D’s images, the
boundaries of different geological bodies can be observed in true-color images (Fig. 3). Further,
in the HSI after MNF transformation, the difference between litho-units is enhanced and can be
better distinguished through color and texture. Finally, in reference to the geological map, the
final GT is labeled through manual interpretation based on MNF-transformed data. Five typical
litho-unit’s spectrum were collected as the endmember matrix for the extraction of the proportion
matrix.

3.2 Data Acquisition

We apply our method to two hyperspectral datasets with GT to evaluate the performance of
the proposed method.

The Urban dataset is an airborne HSI obtained by HYDICE and is widely used in classi-
fication research. It contains 307 × 307 pixels and 210 bands in the range from 0.4 to 2.5 μm.
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Forty-eight bad bands are removed, and the remaining 162 bands are used for classification. The
data contain six endmembers, namely, asphalt, grass, tree, roof, metal, and dirt.

ZY-1 02D was launched on September 12, 2019, and is China’s first self-built commercial
hyperspectral satellite. ZY-1 02D will play an important role in large-scale monitoring and quan-
titative application by virtue of its wide spectrum range and high spatial and spectral resolution
characteristics. ZY-1 02D carries a visible and near-infrared (VNIR) multi-spectral imager and a
hyperspectral sensor. As shown in Table 3, it covers a range of 0.4 to 2.5 μm and has 166 spectral
bands. The spectral resolution is 10 nm for VNIR and 20 nm for shortwave infrared (SWIR). The
spatial resolution is 30 m and the swash width is 60 km.

3.3 Data Processing

The experimental ZY-1 02D images were obtained in the Liuyuan area of Gansu Province on
February 7, 2020. Generally, before the mineral information extraction step, the original hyper-
spectral data needs to be processed into reflectance data. The preprocessing of ZY-1 02D mainly
includes the following steps:

1. Removal of bad bands and overlapping bands.
2. Conversion of DN to radiance by using the absolute calibration coefficient.
3. Strip noise removal by using spectral moment matching methods.
4. Correction of radiance data to reflectance by using the FLAASH atmospheric correc-

tion model.
5. Geometric correction and orthorectification.

4 Experiments and Results

4.1 Experimental Setting

The Urban and the ZY-1 02D datasets with GT are used in this experiment to evaluate the clas-
sification performance of different methods. To test and verify the robustness of the proposed
method, we randomly select 1/10, 1/50, and 1/100 of the original data to construct three datasets
while considering the balance of the sample number of each category. In each dataset, 70% of

Table 3 Technical specifications of ZY-1 02D hyperspectral sensor.

Sensor Module Spectral range (nm) Bandwidth (nm) Spatial resolution (m) Bands

ZY-1 02D VNIR 395 to 1040 ∼10 30 76

SWIR 1005 to 2510 ∼20 30 90

(a)

(c) (d)

(b)

Fig. 3 (a) HSI of the working area; (b) the 1:50000 geological map; (c) the MNF-transformed
HIS of the working area; (d) the GT labeled through manual interpretation.
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these data is used as training data, and 30% is used as validation data. The experiment was
performed in a TensorFlow (1.13.1) framework on an NVIDIATesla V100 GPU and optimized
by the adaptive moment estimation (Adam) algorithm (initial learning rate as 0.001). During
the training process, the SID objective function is used in the CBA and PBA models, whereas
the categorical cross-entropy objective function is used in the basic CNN model. Moreover,
30 epochs are sufficient for training, and the batch size was set to 32.

4.2 Results

4.2.1 Urban

Evaluating proposed methods on public datasets provides more convincing results. The classi-
fication performance of different methods on the Urban datasets is shown in Fig. 4. Evidently,
the performance of the learning-based methods is better than those of the traditional SID and
SAM methods, which have obvious misclassification issues. Interestingly, SID, which is used as
the loss function in learning-based methods, obtains the worst result among all methods
[Fig. 4(b)]. This finding illustrates that the importance of feature learning ability of convolutional
layers for classification. Based on the visual evaluation, it is difficult to distinguish which is the
best among CNN, PBA, and CBA. To quantitatively evaluate the performance of each model in
the classification task, we adopted precision, recall, overall accuracy, and F1-score as the evalu-
ation metrics. The data in Table 4 clearly show that the proposed PBA and CBA methods are
better than the other comparison methods on all metrics, under all kinds of sampling ratio con-
ditions. Moreover, as shown in Fig. 6, as the sampling ratio decreases, the F1-score of the CNN
method drops significantly, whereas the performance of the proposed method is relatively stable.
This finding illustrates the potential of unsupervised feature learning methods in classification
applications based on a small sample.

4.2.2 ZY-1 02D

The ZY-1 02D HSI from Liuyuan is introduced to further evaluate the performance of compari-
son methods for the application of LM. Figure 5 shows the reference endmember spectrum of
litho-units and endmember spectrum reconstructed by the proposed method. The overall shape
of the reconstructed spectrum is consistent with that of the original spectrum. Although a slight
difference in amplitude is observed after 2000 nm, the position of the absorption feature is

CBA

Original SID SAM CNN

PBA Ground Truth

(a) (b) (c) (d)

(e) (f) (g)
Tree

Roof

Dirt

Metal

Grass

Asphalt

Fig. 4 Comparison of classification results of the Urban dataset using different methods. (a) Urban
HSI; (b) SID; (c) SAM; (d) CNN; (e) PBA; (f) CBA; and (g) GT.
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relatively consistent. Correct reconstruction of the original data indicated that the autoencoder
effectively extracted the spatial–spectral features from the HSI.

We first compared the performance of CNN and autoencoder methods under different sam-
pling ratios. In Fig. 6, we can see that, as the sampling ratio decreases, the F1-score of the CNN
method presents the same decline pattern in the Urban dataset. When the sampling ratio is set to
1/100, the F1-score of CNN is lower than 0.55, whereas the F1-score of the proposed methods is
stable at around 0.65 (Fig. 7).

As we mentioned earlier, the composition and formation environments are complex, resulting
in variations in the spectrum. Therefore, obtaining enough representative samples to achieve LM
through supervised learning methods is difficult. The application of supervised learning methods

Table 4 Quantitative evaluation result of each model with different
sampling ratios of training data.

Dataset Model Accuracy Precision Recall F1-score

1/10 PBA 0.92 0.92 0.92 0.91

CBA 0.89 0.91 0.89 0.89

CNN 0.88 0.89 0.89 0.88

SID 0.48 0.67 0.48 0.38

SAM 0.80 0.88 0.80 0.81

1/50 PBA 0.86 0.87 0.86 0.84

CBA 0.87 0.89 0.87 0.85

CNN 0.82 0.83 0.87 0.79

SID 0.48 0.67 0.48 0.38

SAM 0.80 0.88 0.80 0.81

1/100 PBA 0.88 0.86 0.88 0.86

CBA 0.86 0.87 0.86 0.84

CNN 0.80 0.79 0.86 0.77

SID 0.48 0.67 0.48 0.38

SAM 0.80 0.88 0.80 0.81

N
or

m
al

iz
ed

 r
ef

le
ct

an
ce

400

Original spectrum
Predicted spectrum

800
Wavelength (nm)

1200 2000

Fig. 5 Comparison between the reference endmember spectrum of litho-units and endmember
spectrum reconstructed by the proposed method.
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to small data is more likely to lead to overfitting, thereby leading to difficulty in maintaining
robustness in larger and more complex scenarios.

Table 5 shows that when the sampling ratio is set to 1:50, the classification results of the
proposed method are nearly equal to the results of the CNN method. However, CNN has obvious
misclassification in the prediction of categories with a small volume of samples [Fig. 8(d)].
Figure 9 shows that the prediction accuracy of the CNN method differs for each category,
whereas the CBA model has relatively good robustness in the prediction of all categories.

In this case of LM, the performance of CBA is slightly better than that of PBA (Table 5,
Fig. 9) because CBA takes the HSI cube as input to obtain more spatial information. We believe
that CBA is more suitable for scenes with larger classification targets; otherwise, there is no
guarantee that its performance will be better than that of PBA (Table 4). Although the proposed
method still has room for improvement in classification accuracy due to the inaccuracy of
manual labeling, it has better robustness than the supervised learning method. Combined with
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Fig. 7 F1-Score with different sampling ratios of the Urban dataset and the ZY-1 02D dataset.
(a) F1-score of the Urban dataset and (b) F1-score of the ZY-1 02D dataset.

Table 5 Performance of different methods for LM with 1/50 sampling ratio of training data.

Model Accuracy Precision Recall F1-score

PBA 0.64 0.65 0.64 0.64

CBA 0.64 0.67 0.64 0.65

CNN 0.65 0.76 0.64 0.65

SID 0.24 0.41 0.24 0.25

SAM 0.39 0.61 0.39 0.37

PB
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A
C

N
N

1/10 1/50 1/100

Fig. 6 LM results with different sampling ratio for LM of the working area.
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the high-quality HSI of ZY-1 02D, the proposed method shows great potential in the large-scale
applications under small sample conditions.

5 Conclusion

In this work, we present a new 3D convolutional autoencoder for LM. The pixel-based and cube-
based 3D convolutional architecture is designed as an encoder to extract spatial–spectral fea-
tures. An FC layer with non-negative and sum-to-one constrain is employed to extract the end-
member of the litho-units. The traditional methods SAM and SID and machine learning methods
CNN are employed as competing methods and trained on both airborne and spaceborne hyper-
spectral datasets. The experimental results indicate that the proposed method can provide con-
vincing results for LM applications on the basis of hyperspectral data provided by the ZY-1 02D
satellite. Compared with traditional methods, the combination of deep learning and hyperspectral
data can provide more efficient and highly accurate results. The proposed method has better
robustness than the supervised learning methods and shows great promise under small sample

SID SAM

CBA CNN

PBA GT

(f)

(a) (b)

(d)(c)

(e)

Fig. 8 Comparison of classification results for LM of the working area at 1/50 sampling ratio.
(a) SID; (b) SAM; (c) CBA; (d) CNN; (e) PBA; and (f) GT.
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Fig. 9 Comparison of F1-score of each type of litho-units predicted by different models with 1/50
sampling ratio.
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conditions, which is of great significance for large-scale applications based on newly spaceborne
HSI payloads.
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