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ABSTRACT. Agricultural greenhouses have a negative impact on the ecological environment
while bringing huge economic and social benefits. Therefore, it is of great signifi-
cance to obtain greenhouse information in a timely and accurate manner. Due to
the complex spectral characteristics and dense spatial distribution characteristics
of greenhouses, although the extraction of greenhouses based on a single semantic
segmentation model can extract the area with high precision, the segmentation proc-
ess has a serious problem of boundary adhesion between greenhouses, which
makes it difficult to accurately obtain the quantity of greenhouses. To address this,
our study proposes a method for greenhouse extraction that integrates semantic
segmentation and edge constraints, using high-spatial-resolution remote sensing
images to accurately extract the area and quantity of greenhouses. This method
employs an improved semantic segmentation model (AtDy-D-LinkNet) to extract
the greenhouse area, which embeds a convolutional attention module into the
D-LinkNet and adopts a dynamic upsampling strategy, achieving precise green-
house extraction. Experiments demonstrate that the improved model increased the
recall, precision, F1 score, and intersection over union by 1.68%, 2.27%, 1.93%,
and 3.54%, respectively, compared to the original model. To address the significant
edge adhesion issue in semantic segmentation and accurately extract the quantity
of greenhouses, we developed an edge constraint approach. This approach uses
an edge detection model to extract greenhouse boundaries, further constrains the
greenhouse surfaces, separates adhered greenhouses, and outputs vector patches
representing individual greenhouses, thereby achieving precise greenhouse quan-
tity extraction. The experiments show that this method effectively combines the
advantages of semantic segmentation and edge detection. It not only ensures the
accuracy of greenhouse area extraction but also effectively solves the boundary
adhesion issue, significantly improving quantity extraction accuracy, resulting in
vector patches that align with the actual area, quantity, and spatial distribution of
greenhouses. This can provide a data foundation for greenhouse management and
planning in agriculture.
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1 Introduction
Food security is essential for human survival. However, with economic development and urban
expansion, the amount of available arable land is decreasing, posing a threat to food security.1,2

To address this issue, agricultural greenhouses (AGs) have been implemented as they can
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effectively mitigate the impact of natural conditions on crop growth, extend the growing season,
and enhance crop yields and land utilization rates.3,4 Although AGs offer significant economic
and social benefits, their large-scale irrigation and frequent fertilization practices can also
contribute to the degradation of the natural environment. This includes issues such as soil
salinization, soil acidification, eutrophication of water bodies, and the accumulation of soil
pollutants.5–9 Therefore, it is crucial to obtain timely and accurate information on the quantity,
area, and spatial distribution of AGs. These data can provide support for intelligent monitoring
and supervision of AGs, which is of great significance for preventing and controlling agricultural
pollution and managing agricultural production.

The land survey method of on-site collection overly relies on human resources and is inef-
ficient. The development of remote sensing technology, with its advantages of wider detection
range, massive remote sensing data, and rapid information exchange, has been widely applied in
land management, crop yield estimation, change monitoring, and other fields at home and
abroad, becoming the mainstream land survey method. Since the 1960s, scholars have been
studying the extraction of AGs information using remote sensing.10–14 The traditional methods
for AGs extraction are pixel-based classification and object-oriented classification. The pixel-
based classification method uses spectral and texture features to classify pixels in the image.
However, this method only considers individual pixels and does not consider context informa-
tion, resulting in a “salt-and-pepper” effect in the classification. The object-oriented classification
method addresses this issue by analyzing the shape, structure, texture, and spectral characteristics
of ground objects and establishing classification rules. This method segments the image into
objects with semantic consistency. However, it requires high segmentation parameters and
thresholds and may not perform well in complex environments.

In recent years, there has been rapid development in artificial intelligence technology, par-
ticularly the widespread application of deep convolutional neural network models in the intelli-
gent interpretation of remote sensing images.15 These models have demonstrated outstanding
performance and wide application prospects in various fields, such as land use and land cover
classification,16,17 ecosystem management,18 and agricultural monitoring.19 They have paved the
way for innovative approaches to the precise extraction of AGs.20–24 For instance, Yang et al.20

compared the effectiveness of traditional SVM and classical semantic segmentation network in
extracting trellis structures from multispectral and ultrahigh resolution unmanned aerial vehicle
(UAV) data. Their results showed that the semantic segmentation model had higher accuracy and
efficiency. Similarly, Chen et al.21 combined convolutional neural network and long- and short-
term memory network to develop a spatial long- and short-term memory structure, which
improved the accuracy of AG boundary extraction on a large scale.

Currently, the semantic segmentation methods for extracting AGs from medium to high
spatial resolution remote sensing images yield unsatisfactory results, with coarse predictions.
This can be attributed to two main factors: (1) the fine pixels captured by high spatial resolution
images introduce more noise due to factors, such as shadows, light reflections, and occlusions,
exacerbating the intraclass diversity within greenhouses. Consequently, classical semantic seg-
mentation models encounter issues, such as fragmentation within greenhouses and blurring at
their edges. (2) Greenhouses exhibit dense spatial distribution characteristics. From a macro-
scopic perspective, greenhouses are often densely constructed, with some areas characterized
by extremely dense spatial distribution. Even with high-resolution imagery, it is challenging for
semantic segmentation models to accurately identify individual greenhouses.25 Instead, they tend
to recognize contiguous clusters of greenhouses as a single entity, leading to difficulties in accu-
rately extracting the area and number of greenhouses.

To mitigate the influence of edge adhesion, researchers have utilized high-resolution UAV
imagery with a resolution of 0.1 m to extract greenhouses, yielding highly detailed interpretation
results. However, compared to satellite imagery, UAV imagery acquisition entails higher costs
and covers smaller areas, making it difficult to achieve large-scale greenhouse extraction.22

Therefore, enhancing the model’s perception of greenhouse edges is crucial in current research
on fine-scale greenhouse extraction based on satellite imagery. Li et al.23 used ResNet as the
encoder to create an end-to-end semantic segmentation model called EAGNet. This model effec-
tively preserved boundary information using the edge attention mechanism, identifying densely
distributed single AGs. However, the excessive focus on edge separation has led to a significant
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disparity between the extracted gaps and the actual situation, affecting the accuracy of AG area
extraction. Additionally, the complex and extensive network structure hinders operational effi-
ciency. Zhang et al.24 utilized HRNetV226 as the backbone network and developed edge refine-
ment modules to enhance HBRNet, which showed superior performance compared to the
classical model. However, solely relying on a single semantic segmentation model cannot fun-
damentally address edge adhesion, making it challenging to accurately extract information
regarding the number of greenhouses. Therefore, some scholars have adopted a dual-branch
structure, combining semantic segmentation for area extraction and object detection for quantity
extraction, to extract greenhouse information in a coordinated manner using two models,25,27

achieving precise greenhouse extraction. However, in this approach, the predictions of the two
models are mutually independent, and they have not truly achieved integration in terms of pre-
diction result scale.

In response to the aforementioned issues, the main contributions of this study are as follows:
(1) addressing the issues of fragmentation and edge blurring of AG extraction in high spatial
resolution imagery by employing the D-LinkNet architecture embedded with convolutional
block attention module (CBAM) and replacing traditional transpose convolution with a dynamic
upsampling strategy, proposing the AtDy-D-LinkNet model. This model enhances the learning
and recognition capabilities of the greenhouse spectra and spatial features, significantly improv-
ing the accuracy of greenhouse edge recognition. (2) In response to the issue of edge adhesion in
semantic segmentation arising from the dense spatial distribution of AGs and the limited spatial
resolution of remote sensing imagery, this study proposes a “integrating semantic segmentation
and edge detection for greenhouse extraction.” This method utilizes an “edge constraint” by
employing an edge detection model to extract greenhouse boundaries in addition to the surface
extraction of greenhouses by AtDy-D-LinkNet. At the result scale, it leverages greenhouse edge
constraints to separate aggregated greenhouses, obtaining regular greenhouse vector patches.
This ultimately achieves refined extraction of greenhouse area, quantity, and spatial distribution
in the study area.

2 Data

2.1 Study Area
Shouguang City is situated in the northwest of Weifang City and the southwest coast of Laizhou
Bay on the Bohai Sea. It is a county-level city under the jurisdiction of Shandong Province,
covering a total area of about 2072 km2, as depicted in Fig. 1. Shouguang City is located between
36°41 0N ∼ 37°19 0N, 118°32 0E ∼ 119°10 0E, belonging to the continental climate of the warm
temperate monsoon zone, with the characteristics of cold winters and hot summers, rain, and
heat. Shouguang City covers a total area of about 2.06 million acres of cultivated crops, with
the vegetable planting area reaching up to 623,000 acres and an annual output of 3.798 million
tons, earning it the nickname “China’s vegetable basket.” This typical spatial distribution makes
it an ideal area for remote sensing extraction of AGs.

2.2 Data Collection and Labeling
In this study, the submeter image from the Chinese commercial satellite SuperView-1 in October
2021 was utilized as the experimental data. The spatial resolution of the image after preprocess-
ing, including geometric correction, orthorectification, fusion, and mosaic, was 0.5 m. The image
contains four wavebands: blue, green, red, and near infrared, with only the visible band being
utilized in this study.

The quality of the sample directly affects the experimental results. To ensure the reliability of
the experiment, this study utilized a random scattering and manual screening method to uni-
formly select image blocks sized 1000 × 1000 as sample images. The selected samples covered
all types of AGs in the study area and included an adequate number of pure background samples
to enhance the robustness and generalization of the model. We annotated the greenhouse texture
labels and edge labels separately based on the different training characteristics and sample
requirements of the semantic segmentation model and edge detection model. Through augmen-
tation techniques, such as rotation, mirroring, color transformation, and random cropping, we
expanded the sample set to obtain 1600 examples of greenhouse texture samples and greenhouse
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edge samples, each with a size of 640 × 640. These samples were then randomly divided into
training, validation, and testing sets in an 8:1:1 ratio.

3 Methodology

3.1 Overview of the Methodology
To achieve high-precision extraction of greenhouse area, quantity, and spatial distribution infor-
mation, this study proposes integrating semantic segmentation and edge detection for greenhouse
extraction. The technical route of this method is illustrated in Fig. 2 and mainly consists of three
parts: data preprocessing module, model training module, and greenhouse extraction module.

In the data preprocessing and model training modules, the previously described methods are
utilized to construct greenhouse texture and edge datasets, which are then employed to train
the semantic segmentation and edge detection models, respectively, to obtain optimal model
parameters. In the greenhouse extraction module, the process involves several steps. First, the
greenhouse texture surface is extracted based on the semantic segmentation model to obtain
preliminary results, where multiple densely distributed greenhouses may be identified as a whole.
Then the significant visual boundaries of the greenhouses are extracted based on the edge detec-
tion model, accurately identifying even the edges of densely distributed greenhouses. Finally,
through postprocessing algorithms, semantic segmentation and edge detection are fused at the
result scale to ultimately output refined greenhouse vector polygons.

3.2 AtDy-D-LinkNet
The input remote sensing image is represented as F ∈ RC×H×W , where C is the number of chan-
nels, and H ×W denotes the spatial resolution of the image. The objective of this study is to
automatically segment remote sensing images and generate pixel-level semantic feature maps
of size H ×W, aiming to accurately extracting AGs. The proposed AtDy-D-LinkNet is con-
structed based on the standard encoder–decoder U-shaped architecture, as illustrated in Fig. 3.

Fig. 1 Schematic diagram of the study area.
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Fig. 3 AtDy-D-LinkNet module structure diagram.

Fig. 2 Technical route for integrating semantic segmentation and edge detection for greenhouse
extraction.
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To overcome the limitations mentioned in the first section, AtDy-D-LinkNet utilizes spatial and
channel-wise complementary convolutional attention modules,28 along with a dynamic sampling
(DySample) upsampling strategy,29 to further enhance the semantic segmentation quality of
remote sensing images. Compared to the standard D-LinkNet, AtDy-D-LinkNet incorporates
the CBAM into the multiscale skip connection process. It leverages the advantages of channel
attention and spatial attention mechanisms to perceive and aggregate semantic information from
distant contexts, thereby enhancing the expressive power of the model’s semantic features.
Additionally, DySample is employed in AtDy-D-LinkNet to replace the original transpose con-
volution for upsampling, effectively acquiring and expanding the semantic information of deep
feature maps, thereby enhancing the model’s feature extraction performance.

3.2.1 CBAM attention module

The original D-LinkNet adopts skip connections to merge the feature maps of the encoder and
decoder, aiming to address the issue of spatial and channel information loss caused by the down-
sampling process. However, due to the significant semantic gap between the connected convolu-
tional feature maps, the direct addition fusion method is prone to loss of image smoothness and
the introduction of pseudoboundaries.30 Therefore, the proposed AtDy-D-LinkNet introduces the
CBAM attention module at the skip connection between the encoder and decoder networks, as
illustrated in Fig. 4. This module concatenates two independent attention mechanisms: channel
attention and spatial attention. Serving as a bridge, CBAM enhances the semantic information of
the encoding feature maps through two layers of convolutional attention, making the skip con-
nections smoother and further strengthening the model’s ability to capture long-distance channel
and spatial information.

The CBAM attention module concatenates channel attention and spatial attention. Given an
input image, the two attention modules compute complementary attention focusing on “what”
and “where” aspects, which can be mathematically represented by Eq. (1). Specifically, the fea-
ture maps F sampled and output by the Res-Blocks in the encoder are first passed through the
channel attention module of CBAM. This module initially employs max-pooling and average-
pooling to aggregate spatial feature information, generating two tensors describing different spa-
tial contexts. These tensors then enter a perceptron with a hidden layer to share the internal
channel parameters of the tensors. Subsequently, the module outputs channel attention maps
separately, which are then combined to perceive channel information elementwise and obtain
channel attention weights Mc through Sigmoid activation, as shown in Eq. (2). Finally, the
refined intermediate layer F is obtained by multiplying Mc with the input F 0.

Spatial attention primarily focuses on “where.” F 0 serves as the input to the spatial attention
module, where it undergoes both max-pooling and average-pooling operations. Subsequently,

Fig. 4 CBAM module structure diagram.
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the resulting feature maps are concatenated along the channel dimension and passed through
convolutional layers to obtain an effective feature descriptor tensor. Afterward, the Sigmoid
activation is applied to obtain spatial attention weights Ms, as shown in Eq. (3). Finally,
F 00 is obtained by multiplying Ms with the intermediate layer F 0:
EQ-TARGET;temp:intralink-;e001;117;688

F 0 ¼ McðFÞ ⊗ F;

F 00 ¼ MsðF 0Þ ⊗ F 0; (1)
EQ-TARGET;temp:intralink-;e002;117;634

McðFÞ ¼ σðMLPðAVgPoolðFÞÞ þMLPðMaxPoolðFÞÞÞ
¼ σðW1ðW0ðFc

avgÞÞ þW1ðW0ðFc
maxÞÞÞ; (2)

EQ-TARGET;temp:intralink-;e003;117;597

MsðFÞ ¼ σðf7×7ð½AVgPoolðFÞ;MaxPoolðFÞ�ÞÞ
¼ σðf7×7ð½Fs

avg;Fs
max�ÞÞ: (3)

3.2.2 DySample upsampling strategy

In the field of image segmentation, upsampling is a crucial technique used to increase the res-
olution of low-resolution images or feature maps to higher resolutions, aiming to enhance image
details or recover lost information. Upsampling methods mainly include linear interpolation-
based upsampling and deep learning-based upsampling. Linear interpolation-based upsampling
methods, such as nearest neighbor interpolation and bilinear interpolation, are simple and easy to
use. However, they interpolate low-resolution features based on fixed rules, ignoring the seman-
tic information in the feature maps, leading to information loss. Deep learning-based upsampling
fundamentally involves enlarging the size of feature maps by training transpose convolution
kernels. The original D-LinkNet adopts transpose convolution for upsampling, which learns fea-
tures by sharing parameters, effectively utilizing network parameters. However, this approach is
prone to causing the checkerboard artifact and information loss.

To overcome the limitations of traditional methods, AtDy-D-LinkNet introduces DySample
to replace the original transpose convolution. DySample is an innovative dynamic upsampling
method designed to enhance the model’s capacity to capture spatial relationships and improve
segmentation accuracy. It considers upsampling as point resampling, accepting input feature
maps and generating corresponding high-resolution feature maps as output. It is worth noting
that DySample can produce three variants (DySample+, DySample-S, and DySample-S+) with
different internal structures or parameter selections. Experiments were conducted on the greenhouse
dataset to test these four variants, and based on a comprehensive evaluation of accuracy and effec-
tiveness, the basic DySample was selected as the upsampling module for AtDy-D-LinkNet.

The structure of the basic DySample is illustrated in Fig. 5. Initially, the input image X
dynamically generates initial offsets used to adjust the sampling positions in the feature map
through convolution. Subsequently, the offset O is obtained through pixel shuffle and combined
with the original grid of the input image to dynamically calculate the sampling point grid S.

Fig. 5 DySample module structure diagram.
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Finally, grid sampling is performed based on bilinear interpolation. By dynamically generating,
learning, and optimizing sampling positions, DySample enables the model to better preserve
spatial information between features, thus avoiding information loss and blurring phenomena.
This enhancement leads to significant performance improvements in tasks, such as semantic
segmentation, with higher efficiency and accuracy compared to traditional methods.

3.3 Edge Constraint Method
The edge constraint method proposed in this paper is based on the high-precision extraction of
greenhouse surfaces. First, the edge detection model’s sensitivity to abrupt changes in green-
house texture and spectral features is leveraged to accurately detect the edges of the greenhouse,
obtaining edge data as auxiliary information. Then in the postprocessing stage, the edge data are
used to constrain and optimize the surface results, ensuring the accuracy of the edges while
maintaining overall consistency, and ultimately integrating to generate vector polygons of the
greenhouses, achieving a precise extraction of the greenhouses.

3.3.1 Edge detection model

The performance of the edge detection model directly determines the quality of the results.
Traditional edge detection algorithms31–34 quantize local image features to explore object boun-
daries. However, they lack a global perspective and rely solely on low-level surface features,
making it difficult to express high-level semantic boundaries of targets. Deep learning-based
edge detection methods address these limitations by essentially taking a classification approach.
The objective is to categorize object edges and background into two distinct categories to achieve
edge extraction. HED35 first achieved end-to-end edge detection. It is based on the VGG16
framework and introduces a deep supervision mechanism, consisting of a backbone network
and five side output branches at different levels. It adopts a holistic-nested structure to extract
semantic information of varying depths from images at different scales, followed by upsampling
to restore image resolution and outputting. Finally, the feature maps output by each branch are
cascaded and fused to obtain the edge detection results. DexiNed,36 inspired by HED and
Xception,37 combines the holistic-nested, side output edge detection framework with the
Xception backbone structure to reduce the loss of edge features during network downsampling.
It uses transposed convolution for upsampling, refining the prediction of target edges. Therefore,
in this study, DexiNed is used as the foundational model for the edge constraint method.

3.3.2 Postprocessing method

Postprocessing is crucial for integrating the results of semantic segmentation and edge detection.
This method first enhances the accuracy and reliability of the model’s extraction results through
mathematical morphology operations. Then, using a raster-to-vector conversion algorithm, the
extracted surfaces and edges of the greenhouse are transformed into line vector features, which
are easier to process and edit. Subsequently, through vector merging, the fine edges of the green-
house constrain the greenhouse surfaces, ensuring clear boundaries between greenhouses and
separating adhered greenhouses. Finally, through comprehensive processing of vector lines and
polygons, the spatial data of the greenhouses are transformed and optimized, leading to precise
extraction of the greenhouses. The main technical process of postprocessing is illustrated in
Fig. 6 and detailed as follows.

(1) In the postprocessing of semantic segmentation, initially, a threshold of 0.5 is applied to
binarize the extracted greenhouse surface results and fill holes smaller than 500 pixels.
Subsequently, raster-to-polygon and polygon-to-line conversions are conducted to obtain
greenhouse line features. Finally, the Douglas–Peucker algorithm is employed to retain
the crucial bends in the lines, achieving line simplification.

(2) In the postprocessing of edge detection, the extracted greenhouse edge results are binar-
ized using an optimal threshold based on an automatic image thresholding algorithm.
Next, a morphology-based edge thinning algorithm is used to process the binary raster,
resulting in a one-pixel-width greenhouse edge raster dataset. Following the same
approach, raster-to-line conversion and line simplification are performed.
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(3) In the results integration phase, line vector merging is initially conducted to constrain the
surface segmentation results with the greenhouse edge detection outcomes. Subsequently,
line-to-polygon conversion is employed to obtain integrated boundary-constrained green-
house patches. To refine the results, holes in the greenhouse patches smaller than 300
square units are filled, and fragmented patches smaller than 300 square units are removed.
Finally, the Douglas–Peucker algorithm is utilized to simplify the polygon features, yield-
ing in refined greenhouse vector results.

3.4 Model Evaluation Methods
To quantitatively evaluate the extraction performance of the AtDy-D-LinkNet model, four main-
stream evaluation metrics were selected in the experiments: recall, precision, F1 score, and inter-
section over union (IoU). Recall describes the proportion of correctly predicted pixels among all
actual greenhouse pixels, as shown in Eq. (4). Precision represents the proportion of correctly
predicted greenhouse pixels among all pixels predicted as greenhouses by the model, as shown in
Eq. (5); F1 score comprehensively considers recall and precision by computing their weighted
average, as shown in Eq. (6). IoU measures the overlap between the extraction results and the
ground truth, as depicted in Eq. (7):

EQ-TARGET;temp:intralink-;e004;117;320recall ¼ TP

TPþ FN
; (4)

EQ-TARGET;temp:intralink-;e005;117;274precision ¼ TP

TPþ FP
; (5)

EQ-TARGET;temp:intralink-;e006;117;246F1 ¼ 2 ·
precision · recall
precisionþ recall

; (6)

EQ-TARGET;temp:intralink-;e007;117;215IoU ¼ TP

TPþ FPþ FN
: (7)

In the above formulas, true positive (TP) represents the number of samples correctly pre-
dicted as positive by the model, true negative (TN) represents the number of samples correctly
predicted as negative by the model, false positive (FP) represents the number of samples incor-
rectly predicted as positive by the model, and false negative (FN) represents the number of sam-
ples incorrectly predicted as negative by the model.

Due to the test set’s inability to fully cover the complex conditions in the study area, it is
challenging to comprehensively assess the model’s actual performance in extracting greenhouse
area from large-scale images based solely on accuracy data from the test set. Therefore, experi-
ments were conducted in three typical areas (zone 1, zone 2, and zone 3) within Shouguang
City, each consisting of 3722 × 3722 pixel patches. These areas encompass various types of
greenhouses with different spatial distributions, situated amidst complex background features.

Fig. 6 Result postprocessing flowchart.
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They were utilized to evaluate the accuracy of greenhouse area and quantity extraction in
large-scale images.

To validate the effectiveness of this method in greenhouse area extraction, experiments were
conducted by computing the confusion matrix between the ground truth images and the predicted
images in typical areas. Two metrics, F1 score and kappa coefficient, were calculated to com-
prehensively measure the accuracy of the extraction. Additionally, the area accuracy (AA) was
calculated to directly assess the difference between the extracted greenhouse area (Apre) and the
actual greenhouse area (Agt), as shown in Eq. (8). The kappa coefficient is utilized to measure
classification consistency, considering both the model’s prediction consistency and the random
chance of classification, as described in Eq. (9), where po represents the classification accuracy,
and pe denotes the expected accuracy. For evaluating the effectiveness of greenhouse quantity
extraction, experiments involved counting the number of vector patches output by the edge
constraint module to obtain the extracted greenhouse quantity (Npre). This, combined with the
manually annotated actual greenhouse quantity (Ngt), allowed for the calculation of quantity
accuracy (QA). QA describes the difference between the predicted and actual greenhouse counts,
providing an intuitive reflection of the effectiveness of greenhouse quantity extraction, as shown
in Eq. (10):

EQ-TARGET;temp:intralink-;e008;114;529AA ¼ 1 −
jApre − Agtj

Agt

; (8)

EQ-TARGET;temp:intralink-;e009;114;478

k ¼ po − pe

1 − pe
;

po ¼ accuracy;

pe ¼
ðTPþ FNÞ × ðTPþ FPÞ þ ðTNþ FPÞ × ðTNþ FNÞ

ðTPþ FPþ TNþ FNÞ2 ; (9)

EQ-TARGET;temp:intralink-;e010;114;404QA ¼ 1 −
jNpre − Ngtj

Ngt

: (10)

4 Results and Analysis

4.1 Semantic Segmentation Model Evaluation
To quantitatively evaluate the performance of the proposed model, this study compared the
extraction accuracy of the AtDy-D-LinkNet model with four representative semantic segmenta-
tion models (FCN8S, UNet, DeepLabV3, and D-LinkNet) based on the same environment using
the test set. The results in Table 1 demonstrate that the accuracy of the AtDy-D-LinkNet model
proposed in this paper is significantly superior to other models. The extraction accuracy of
DeepLabV3, FCN8S, and D-LinkNet is similar. The AtDy-D-LinkNet model achieves 0.9083,
0.9107, 0.9081, and 0.8634 for recall, precision, F1 score, and IoU, respectively. Compared to
the original D-LinkNet, AtDy-D-LinkNet exhibits improvements of 1.68%, 2.27%, 1.93%, and
3.54% in these metrics, indicating high segmentation performance.

Table 1 Accuracy evaluation of semantic segmentation models.

Model Precision Recall F 1 IoU

FCN8S 0.8793 0.8743 0.8759 0.8143

UNet 0.8665 0.8617 0.8635 0.8088

DeepLabV3 0.8962 0.8923 0.8940 0.8475

D-LinkNet 0.8932 0.8904 0.8909 0.8340

AtDy-D-LinkNet 0.9083 0.9107 0.9081 0.8634
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Figure 7 illustrates the extraction results of each model. Overall, AtDy-D-LinkNet extracts
greenhouses more closely to reality. The coupling use of channel and spatial attention modules
along with dynamic upsampling strategy yields excellent results: (1) this model significantly
reduces the presence of holes and fragments on the greenhouse surface while improving the
accuracy of boundary recognition between greenhouses and background objects, facilitating the
extraction of more complete and regular greenhouses. (2) The model reduces misidentification of
background objects, such as buildings, roads, and farmland, demonstrating stronger robustness in
complex scenes. (3) The model exhibits a stronger capability in greenhouse boundary recogni-
tion and separation, effectively alleviating edge adhesion issues caused by dense greenhouse
distributions, as shown in Fig. 7(a). However, in Fig. 7(e), where the distribution of greenhouses
is extremely dense, semantic segmentation alone cannot extract individual greenhouses, resulting
in multiple greenhouses being identified as a single entity.

4.2 Evaluation of Greenhouse Area Accuracy Using AtDy-D-LinkNet
To evaluate the practical performance of the AtDy-D-LinkNet model in extracting greenhouse
areas, we calculated the confusion matrix between the extraction results of AtDy-D-LinkNet and
the ground truth annotation images, obtaining comprehensive accuracy metrics F1 and kappa,
and directly calculate the AA for greenhouse extraction. As shown in Table 2, AtDy-D-LinkNet
achieved high accuracy in extracting greenhouse areas in the three typical regions, indicating its
high overall quality in identifying large-scale image features.

It is worth noting that the models overestimate the areas in zone 1 and zone 2, while under-
estimating the areas in zone 3. This phenomenon arises due to the different spatial distributions of

Fig. 7 Comparison of semantic segmentation model predictions. The figure compares the green-
house extraction results of the ground truth and five semantic segmentation models for various
regions (a)–(g) within the study area.
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greenhouses in the three typical areas. In zone 1 and zone 2, the greenhouses are densely dis-
tributed, which causes the greenhouses to be closely positioned, leading to edge adhesion during
segmentation and misclassification of some background pixels, resulting in an overestimation of
the area. In zone 3, the greenhouses are mainly distributed discretely. The attention mechanism
and dynamic sampling strategy in the model refine the edges of the greenhouses, causing the
extracted greenhouse boundaries to contract inward. Although this refinement improves the issue
of edge adhesion between greenhouses, it also leads to an underestimation of the extracted area
compared to the actual area.

4.3 Application of Edge Constraint Method
Figure 8 demonstrates the practical performance of greenhouse extraction in typical areas
through the integration of semantic segmentation and edge detection. This method fully utilizes
the results of both greenhouse surface and edge detection. By employing the edge constraint
method, the system produces vector patches that closely conform to the actual morphology
of the greenhouse, achieving refined extraction. Figure 8(a) illustrates a scenario of extreme den-
sity in typical greenhouses. If the vectorization is directly applied to the semantic segmentation
results, it would be challenging to accurately representing the morphology and quantity of the
greenhouses in this area. In the extraction process of this method, the greenhouse-covered areas
are first accurately identified by the semantic segmentation model, where contiguous green-
houses are recognized as a whole. Then, with the precise extraction of greenhouse boundaries
using the edge detection model, including both “greenhouse–land boundaries” and “greenhouse–
greenhouse boundaries,” clusters of greenhouses can be clearly distinguished. Subsequently,

Fig. 8 Effect diagram of edge constraints in AG intensive areas. This figure presents three regions:
(a)–(c). Each region showcases semantic segmentation using AtDy-D-LinkNet, edge detection
using DexiNed, and polygonal vector output using edge constraint.

Table 2 Area extraction accuracy of typical zone.

Typical zones Agt (m2) Apre (m2) AA F 1 Kappa

Zone 1 1423130.25 1444843.00 0.9847 0.9549 0.8910

Zone 2 1497838.75 1488383.50 0.9937 0.9382 0.8568

Zone 3 1605095.25 1480240.75 0.9222 0.9216 0.8243
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the edge constraint method proposed in Sec. 3.3 is applied, utilizing the edge characteristics of
the greenhouse to constrain the greenhouse surface, ultimately generating refined greenhouse
vector patches.

The design intent of the edge constraint method is to compensate for the limited edge per-
ception capability of the semantic segmentation model and to address edge adhesion through
model collaboration. In fact, the process of edge constraint not only effectively separates adher-
ing patches of greenhouses but also naturally optimizes and mitigates some deficiencies in the
model extraction results. As shown in Fig. 8(b), there is evident underextraction in the segmen-
tation results, while the edge detection model accurately identifies the boundaries of the under-
extracted greenhouses. The combination of these results ensures their complete preservation in
the vector patches. In Fig. 8(c), spectral changes caused by specular reflections on the greenhouse
roofs lead to holes in the segmentation results. The edge detection model is highly sensitive to the
visual features of the sharply changing greenhouse roofs, which may lead to potential misex-
traction. These issues are naturally resolved during the vector processing of edge constraint.

The experiments demonstrate that this method can significantly improve the accuracy of
greenhouse quantity extraction. When converting the raster results extracted by the model into
vectors and counting the number of patches, according to Table 3, in typical areas, such as zone 1
and zone 2, with dense distribution, the number of greenhouses obtained solely through semantic
segmentation is much lower than the actual number. However, our method can separate adhering
greenhouses, leading to a 34.2% and 36.6% improvement in QA for zone 1 and zone 2, respec-
tively. In zone 3, where greenhouses are relatively scattered and only a few are densely distrib-
uted, the semantic segmentation model can accurately identify the dispersed greenhouses,
achieving high-QA. On this basis, our method improves by 8.2%.

4.4 Greenhouse Information Statistics and Mapping
Based on the imagery of the study area from October 2021, this method was used to extract
information on the area, quantity, and spatial distribution of greenhouses. According to the sta-
tistics, the greenhouse coverage area in the study area is ∼232.72 km2. Using the edge constraint
method and vector statistics, the quantity of greenhouses extracted is 157,170. The distribution of
greenhouses in the Shouguang area is closely related to human activities and geographical loca-
tion. Supported by government policies, villages and towns with moderate population density
and proximity to the city center are ideal locations for greenhouse construction. According to
Fig. 9, greenhouses in Shouguang are mainly distributed in the central and southern regions,
primarily featuring nondense greenhouse distribution types, with dense greenhouse distribution
types being relatively rare. Overall, the results for area extraction and quantity extraction dem-
onstrate strong consistency.

5 Discussion
This study addresses the practical need for extracting the quantity, area, and spatial distribution of
AGs. We propose a method for integrating semantic segmentation and edge detection for AG
extraction. Through experiments and comparative analysis in the study area, we discuss the
following points.

Table 3 Quantity extraction accuracy of typical zones.

Typical zones Ngt Method Npre QA

Zone 1 1103 Only semantic segmentation 706 0.6401

With edge constraint 1084 0.9828

Zone 2 824 Only semantic segmentation 493 0.5983

With edge constraint 795 0.9648

Zone 3 1124 Only semantic segmentation 998 0.8879

With edge constraint 1091 0.9706
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(1) Due to the dense spatial distribution of AGs, which often form compact clusters with
narrow intervals between them, medium- and low-resolution imagery struggles to accu-
rately delineate greenhouse boundaries, leading to low extraction accuracy. This study
utilizes 0.5 m high-resolution remote sensing imagery as the data source. This imagery
offers finer pixels and captures richer spatial and textural information, providing a solid
data foundation for accurate greenhouse identification.

(2) To achieve precise greenhouse segmentation, we propose the AtDy-D-LinkNet, based on
D-LinkNet and enhanced with the CBAM attention module and DySample dynamic sam-
pling strategy. Experimental evaluation results indicate that this model effectively learns
and identifies greenhouse features, is adept at filtering out noise interference, and reduces
internal holes, false positives, and false negatives. Compared to other models, the extrac-
tion results of this model show significant improvements in both objective accuracy met-
rics and subjective visual assessment.

(3) This study constructs an edge constraint method as a bridge to integrate the results of
semantic segmentation and edge detection, effectively combining the advantages of both
models. This approach addresses the edge adhesion problem that arises in dense green-
house clusters predicted by a single semantic segmentation model, achieving high-accu-
racy extraction of greenhouse quantity and areas. However, compared to traditional
methods, this approach requires comprehensive training of both deep learning models,
which affects efficiency.

(4) The predicted results of greenhouses are coarse raster data, which cannot be directly used
for greenhouse monitoring and management tasks. Previous studies have lacked further
geographic processing of the predicted results. This study optimizes and integrates the
predicted results into vector data through postprocessing. It aims to obtain vector results
that closely match the actual area, quantity, and spatial distribution of greenhouses,
thereby facilitating advanced analysis and decision-making.

6 Conclusions
The widespread adoption of AGs has promoted local agricultural and economic development but
has also led to environmental pollution issues. Timely and accurate extraction of greenhouse
areas, quantity, and spatial distribution information is crucial for the sustainable development
of the local greenhouse economy. Traditional semantic segmentation methods tend to produce
edge adhesion in greenhouses, making it difficult to accurately extract their numbers. This paper
proposes a more effective semantic segmentation model, AtDy-D-LinkNet, and develops a
method for AG extraction that integrates semantic segmentation and edge detection. We verified

Fig. 9 Spatial distribution of greenhouses in Shouguang City.
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the scientific validity and feasibility of this method using submeter high-resolution remote sens-
ing imagery in Shouguang City, Shandong Province. The experimental results indicate that:
(1) The AtDy-D-LinkNet model demonstrates high extraction accuracy, surpassing traditional
models. (2) Edge constraint method effectively addresses the edge adhesion problem caused
by segmentation, enabling precise extraction of greenhouse areas, numbers, and spatial distri-
bution. The final extraction results show that as of October 2021, the greenhouse coverage area in
Shouguang City is ∼232.72 km2, with about 157,170 greenhouses. Spatially, the greenhouses
are primarily distributed in the central and southern regions of Shouguang City.

The precise extraction of greenhouses based on deep learning requires a significant number
of samples, which necessitates extensive and labor-intensive manual annotation. Therefore,
future research will focus on developing greenhouse extraction methods suitable for small sam-
ple scenarios to advance the automation of remote sensing interpretation.
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