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Abstract

Significance: Interaction of neurons with their extracellular environment and the mechanical
forces at focal adhesions and synaptic junctions play important roles in neuronal development.

Aim: To advance studies of mechanotransduction, we demonstrate the use of the vinculin tension
sensor (VinTS) in primary cultures of cortical neurons. VinTS consists of TS module (TSMod),
a Förster resonance energy transfer (FRET)-based tension sensor, inserted between vinculin’s
head and tail. FRET efficiency decreases with increased tension across vinculin.

Approach: Primary cortical neurons cultured on glass coverslips coated with poly-D-lysine
and laminin were transfected with plasmids encoding untargeted TSMod, VinTS, or tail-less
vinculinTS (VinTL) lacking the actin-binding domain. The neurons were imaged between day
in vitro (DIV) 5 to 8. We detail the image processing steps for calculation of FRETefficiency and
use this system to investigate the expression and FRET efficiency of VinTS in growth cones.

Results: The distribution of fluorescent constructs was similar within growth cones at DIV 5 to
8. The mean FRET efficiency of TSMod (28.5� 3.6%) in growth cones was higher than the
mean FRET efficiency of VinTS (24.6� 2%) and VinTL (25.8� 1.8%) (p < 10−6). While
small, the difference between the FRET efficiency of VinTS and VinTL was statistically
significant (p < 10−3), suggesting that vinculin is under low tension in growth cones. Two-hour
treatment with the Rho-associated kinase inhibitor Y-27632 did not affect the mean FRET
efficiency. Growth cones exhibited dynamic changes in morphology as observed by time-lapse
imaging. VinTS FRET efficiency showed greater variance than TSMod FRET efficiency as a
function of time, suggesting a greater dependence of VinTS FRET efficiency on growth cone
dynamics compared with TSMod.

Conclusions: The results demonstrate the feasibility of using VinTS to probe the function of
vinculin in neuronal growth cones and provide a foundation for studies of mechanotransduction
in neurons using this tension probe.
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1 Introduction

Extracellular mechanical cues contribute to cell differentiation, proliferation, and migration. In
neurons, these mechanical cues play a role in dictating neuronal morphology and dendritic
branching.1 In addition, various neural tissue pathologies, such as traumatic brain injury and
degenerative diseases, involve alterations in tissue stiffness and expose neurons to environments
with altered mechanical properties. Thus, understanding the role of mechanical forces in neuro-
nal development and connectivity may help elucidate mechanotransduction pathways that could
be exploited to enhance neuronal repair or regeneration.

Several techniques have been advanced to investigate cellular mechanics. Traction force
microscopy has been a technique of choice to measure forces at the cellular level, producing
measurements of cellular traction stresses, including their local magnitude and direction.2–5

Molecular fluorescent probes have been developed to sense forces. Some of these probes are
expressed on the surface of cells and can sense forces between cells and the substrate to which
the cells are attached.6–10 Another class of probes are expressed intracellularly,11–14 such as
vinculin tension sensor (VinTS), the probe used in this study,12 and have been extensively
reviewed.15–20 The purpose of these probes is to measure tension across a specific molecule,
such as vinculin, and help elucidate the role of mechanical forces during distinct cellular behav-
iors. In general, these probes target load-bearing molecules within the cell–substrate or cell–cell
adhesion complexes. These sensors have been utilized successfully in epithelial cells where they
have shed light on tension-driven regulation of focal adhesions21 and adherens junctions.14,22

In neuronal cells, the use of molecular tension probes has been relatively limited. A molecular
probe was developed to measure actin tension and axonal growth in response to nerve growth
factor and glial scar inhibitors in pheochromocytoma 12 (PC12) cells and to study the role of
talin and E-cadherin in this response.23 In results reported in a manuscript posted to BioRxiv, a
Förster resonance energy transfer (FRET)-based sensor was also developed to measure tension
across N-cadherin at synaptic junctions.24

In this paper, we demonstrate the use of VinTS12 in cortical neurons. VinTS is composed of a
FRET tension module, TS module (TSMod), inserted between the vinculin head and tail. TSMod
consists of a 40 amino acid flagelliform peptide inserted between monomeric teal fluorescent
protein [monomeric teal fluorescent protein 1 (mTFP1)] and mVenus and is sensitive to molecu-
lar forces between 1 and 6 pN.12 Increased tension across VinTS leads to greater separation
between the vinculin head and tail and lower FRET efficiency, reflecting lower quenching
of the donor (mTFP1) fluorescence by the acceptor (mVenus).

We chose VinTS as vinculin is a known key regulator of focal adhesions,12,25 and recently,
there has been increased focus on investigation of the role and distribution of vinculin in
neurons.26–29 The key role of vinculin as a mechanical clutch molecule in adhesion signaling
has been well-established in epithelial cells.30 Conservation of focal adhesion architecture across
the cell and various cell types31 suggests that cell adhesion signaling in neurons may involve
similar molecules, including vinculin, in response to altered mechanical cues. Indeed, coupling
of the cytoskeleton to the substrate affects neuronal growth dynamics.32 Vinculin is found in
growth cones33 and plays a role in filopodial development.29 Vinculin co-localizes with focal
adhesion kinase (FAK) in neurons.26 Furthermore, neurites in vinculin-deficient PC12 are shorter
than neurites in control PC12 cells,28 and micro-scale chromophore-assisted laser inactivation of
vinculin results in bending and buckling of filopodia.29 In addition, the force-dependent inter-
action of vinculin with alpha-catenin34 suggests that vinculin may play a role in cadherin-
mediated dynamics and dendritic spine formation.35 Thus, vinculin is emerging as a significant
player in neuronal mechanosensing and adhesion-dependent dynamics.

Here, we measure the FRET efficiency of VinTS in the growth cones of cortical neurons
cultured on glass coverslips coated with poly-D-lysine (PDL) and laminin. By comparing the
mean FRET efficiency of VinTS to that of TSMod and tail-less vinculinTS (VinTL) that cannot
bind actin, our results suggest that between days in vitro (DIV) 5 to 8, vinculin is under low
tension in the growth cones of neurons. We also observed dynamic changes in VinTS FRET
efficiency as a function of time, suggesting that vinculin tension varies within growth cones
undergoing morphological changes. Our results provide a basis for further investigations of this
tension probe in neurons.
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2 Methods

2.1 Primary Neuronal Culture

Cortices were dissected from embryonic rat brains at gestational day 18 as previously
described36,37 and in accordance with protocols approved by the Rutgers Animal Care and
Facilities Committee and the National Institutes of Health guide for the care and use of
Laboratory animals (Rutgers Institutional AAALAC Accreditation Number: 000534). Tissue
was triturated, and neurons were dissociated and cultured. The neuronal culture was maintained
at 37°C and 5% CO2 in neurobasal medium supplemented with 2% B27 and 1% Glutamax
(Invitrogen). The neurons were cultured at a density of 50;000 cell∕cm2 on glass coverslips
coated with PDL (0.0025 mg∕cm2) and laminin (0.00025 mg∕cm2).

2.2 Neuronal Transfection

Transfection with plasmids encoding Vinculin TS (VinTS), TSMod, or VinTL was performed
between DIV 4 to 7 for imaging of neurons between DIV 5 to 8 when growth cones can be
observed. The transfection was achieved by one hour incubation of the neurons in each well
of a 12 well plate in complete Neurobasal medium containing 1.5-μg deoxyribonucleic acid
(DNA) plasmid, 1.5-μL PLUS reagent, and 2-μL Lipofectamine LTX (Invitrogen). VinTS,
VinTL, and TSMod plasmids were a gift fromMartin Schwartz;12 VinculinTS (Addgene plasmid
#26019;38 RRID:Addgene_26019) VinTL (Addgene plasmid #26020;39 RRID:Addgene_26020)
and TSMod (Addgene plasmid #2602140 RRID:Addgene_26021).

2.3 Treatment with Y-27632 (Y Compound)

For treatment with the Rho-associated kinase (ROCK) inhibitor Y-27632, the aqueous stock
solution (5 mM) of Y-27632 (Cat. #688001, Sigma-Aldrich, St. Louis, Missouri, United
States) was dissolved in full Neurobasal medium to a final concentration of 10-μM. Neurons
expressing VinTS or VinTL were incubated at 37°C and 5% CO2 for 2 h in full neurobasal
medium containing either 10-μM Y-27632 or sterile water (vehicle control). Following incuba-
tion, the medium was switched to HEPES-buffered balanced salt solution (HBBSS41) for live cell
imaging.

2.4 Image Acquisition

Imaging was performed at 24 to 48 h after transfection. Each glass coverslip was mounted
onto a custom-made metal slide chamber filled with HEPES-buffered balanced salt solution
(HBBSS41) and was imaged on an automated wide-field epi-fluorescence microscope (Zeiss
Axiovert 200 M) using a 63× oil immersion objective with a 1.4 numerical aperture (Zeiss
plan Apochromat 63× 1.4 oil, 440762-9904). Initially, images of growth cones from neurons
expressing VinTS and TSMod were collected on an electron multiplying charge-coupled device
(EM-CCD) camera (Cascade 512B, Photometrics, Roper Scientific) operated by the IPLab 4.0.8
software (Becton Dickinson, BD Biosciences). Throughout the project, the system was
upgraded, and additional images of growth cones from neurons expressing VinTS, VinTL, or
TSMod were collected on a scientific complementary metal oxide semiconductor (sCMOS)
camera (PCO Edge 4.2bi, PCO, GmbH). The sCMOS was operated by VisiView software
(Visitron Systems GmbH). The microscope was equipped with a mercury arc source and exci-
tation and emission filter wheels (Ludl) mounted with filters for the mTFP1/mVenus FRET pair:
mTFP1 excitation filter (Chroma, ET450/30×), Venus excitation filter (Chroma, ET514/10×),
mTFP1 emission filter (Chroma, ET485/25 m), Venus emission filter (Semrock, FF01-571/72).
The excitation and emission filters were used with a single two-band dichroic mirror (Chroma,
T450/514rpc) mounted in the filter reflector turret of the microscope. To minimize photobleach-
ing, two neutral density filters with a total optical density = 1.5 were placed in front of the
excitation source.
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We measured FRET efficiency using the conventional three cube method, which consists of
acquiring images in three channels: (1) the donor channel (IDD) with mTFP1 excitation and
emission bandwidths centered at 450 and 485 nm, respectively; (2) the acceptor channel (IAA)
with mVenus excitation and emission bandwidths centered at 514 and 571 nm, respectively;
(3) the raw FRET channel (IDA) with mTFP1 excitation centered at 450 nm and mVenus
emission centered at 571 nm. All three images IDD, IAA, and IDA were acquired with the same
exposure time.

2.5 Image Processing

Several image processing steps were undertaken before calculating FRET efficiency, as shown
in Fig. 1.

2.5.1 Background subtraction

The growth cones images were cropped from the raw images, and the cropped images were
background subtracted. On the EM-CCD with magnification of 0.25-μm per pixel, images
96 pixels × 96 pixels in size were cropped from the 512 pixels × 512 pixels raw images. On
the sCMOS with magnification of 0.1 μm per pixel, images 240 pixels × 240 pixels in size were
cropped from the 2048 pixels × 2048 pixels raw images. The field of view of the cropped
images was 24 × 24 μm2. In each of the three acquisition channels, the background was
estimated in the cropped image by gray-scale morphological opening (“imopen” function in
MATLAB, The Mathworks, Inc., Natick, Massachusetts, United States). Morphological opening
consists of image erosion followed by dilation with a “rolling” structuring element of specified
shape and size over the image.42 When the structuring element size is larger than the objects in
the foreground of the image (the growth cones in our case), morphological opening assigns the
minimum pixel value (value in the background regions surrounding the growth cone) to the
pixels within the structuring element as it is translated over the image. The resulting opened
image, which gives a local estimate of the background away from the growth cone, is then sub-
tracted from the original cropped image. The structuring element was a disk of radius 50 pixels
on the EM-CCD images; a disk element of radius 125 pixels on the sCMOS. The deployed
structuring elements were kept fixed and were not changed throughout the analyses. The radial
length of the growth cones typically varied in the range of 1.25 to 7.5 μm.

2.5.2 Image registration and segmentation

Image registration was achieved using multimodal rigid registration (EM-CCD) or translation
(sCMOS), based on optimization of mutual information.43 This was done in MATLAB
(The Mathworks, Inc.) using the “imregister” function with the cropped IAA as the reference

Fig. 1 Image processing flowchart to calculate the FRET efficiency in the growth cones images.
IAA, IDD, and IDA denote the raw images in the three channels; iAA, iDD, and iDA denote the back-
ground-subtracted cropped images. Manual segmentation was performed on the cropped raw IAA
image. The resulting mask was used to limit the FRET efficiency calculation to the pixels within
the growth cone region.
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image and cropped IDD or IDA as the moving image. We found that the IAA and IDA images were
initially registered for the data collected on the EM-CCD. However, both IDA and IDD required
registration on the sCMOS. To check the similarity of the registered images, the registered
images were binarized and compared using the Sørensen–Dice similarity coefficient (“Dice”
function in MATLAB, The Mathworks, Inc.).44,45 For two binary image inputs i 0DX and
i 0AA, the Dice similarity coefficient is given by 2 � ji 0DX ∩ i 0AAj∕ðji 0DXj þ ji 0AAjÞ and can take
values between 1 (similar) and 0 (not similar).46 “Dice” calculates the number of overlapping
pixels between the two input images divided by the number non-zero pixels in the input images.
It is a measure of spatial overlap between two images that is commonly used for segmentation
and registration verification.46 The Dice coefficient was >0.99 for all registered images consid-
ered for further analysis. The images were manually segmented to limit the analysis of FRET
efficiency to the growth cones region without including the background pixels in the calcula-
tions. The segmentation was performed on the copped IAA image and the resulting masks were
subsequently applied to all three registered channels (Fig. 1).

2.5.3 FRET efficiency calculation

A FRET efficiency image was generated by calculating FRET efficiency at each pixel of the
segmented images as follows:

EQ-TARGET;temp:intralink-;e001;116;506E ¼ Fc∕iDD
Gþ Fc∕iDD

; (1)

where iDD is the donor channel image after background subtraction and registration. Fc is the
corrected FRET image obtained by subtracting the donor and acceptor bleed-through from the
IDA image as explained by Menaesse et al.47 with Fc ¼ iDA − a · iAA − d · iDD. iAA and iDA are
the background-subtracted and registered acceptor channel and FRET channel image, respec-
tively. The G-factor is a calibration constant for a specific imaging setup and fluorophore pair.
The G-factor was obtained in separate calibration experiments using measurements of Fc and
iDD and the known FRET efficiency of TSMod, as explained in detail by Menaesse et al.47 For
this calibration, the TSMod FRET efficiency was taken as 0.286, based on data from Gates
et al.48 We measured bleed-through values of a ¼ 0.48 and d ¼ 0.84 for the EM-CCD;
a ¼ 0.47 and d ¼ 0.81 for the sCMOS. G was 2.08 for the EM-CCD; 3.15 for the sCMOS.

3 Results

3.1 Generation of Registered and Segmented Growth Cones images

Representative raw images in the three channels, IDD (donor channel, cyan), IAA (acceptor chan-
nel, yellow), and IDA (FRET channel, red), are shown for a neuron expressing VinTS (Fig. 2) and
a neuron expressing TSMod (Fig. 3). For subsequent FRET efficiency calculations, regions with
growth cones were identified in the raw images and cropped as shown in Fig. 2 for three growth
cones expressing VinTS and in Fig. 3 for one growth cone expressing TSMod.

Examples of image registration between the IDD and IAA channels are shown in Fig. 4. The
cropped IAA image was also manually segmented [Figs. 5(a) and 5(b)]. The segmentation
yielded a binary mask, which was applied to the background-subtracted and registered iAA,
iDD, and iDA cropped images as explained in Fig. 1. Calculation of FRET efficiency was there-
fore limited to the pixels within the segmented mask [Fig. 5(c)].

3.2 Analysis of FRET Efficiency at the Growth Cones

Although VinTS was recruited into growth cones, growth cones from neurons expressing VinTS
showed no clearly discernable difference in the spatial distribution of VinTS expression com-
pared with TSMod expression [Figs. 6(a) and 7(a)]. By generating the corresponding FRET
efficiency images [Figs. 6(b) and 7(b)], we initially investigated whether growth cones that
express VinTS exhibit a different FRET efficiency compared with growth cones that express
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the untargeted and unloaded TSMod. The mean (±standard deviation) FRET efficiency of
the growth cones expressing VinTS (n ¼ 111 images, N ¼ 8 experimental repeats) was
24.6� 3.8%, significantly lower (p ¼ 2.69 10−12 by Welch’s t-test) than the mean FRET effi-
ciency of growth cones expressing TSMod (n ¼ 131 images, N ¼ 9 experimental repeats),
which was 28.67� 4.8% [Fig. 8(a)].

To establish whether the measured lower FRET efficiency of VinTS is due to tension in the
growth cones, we repeated our experiments with TSMod, VinTS, and VinTL. VinTL lacks the
actin-binding domain of vinculin and acts as a negative control in which the tension sensor is
targeted to vinculin but should not sense tension.12 Representative images of growth cones
expressing VinTL are shown in Fig. 9. The mean (± standard deviation) FRET efficiency
of both VinTL (25.8� 1.8%, n ¼ 99 images, N ¼ 5 experimental repeats) and VinTS

Fig. 3 Raw images of growth cones expressing TSMod. The three images are the output of three
imaging channels: donor (mTFP1) excitation and donor emission, IDD (Cyan); acceptor (mVenus)
excitation and acceptor emission, IAA (yellow); FRET channel, donor excitation and acceptor
emission, IDA (red). The original field of view is 128 × 128 μm (EM-CCD). A growth cone region
(red box) was selected for processing to calculate FRET efficiency. Under each original image is
the corresponding selected growth cone area. The field of view in the cropped region with the
growth cone is 24 × 24 μm2.

Fig. 2 Raw images of growth cones expressing VinTS. The three images are the output of three
imaging channels: donor (mTFP1) excitation and donor emission, IDD (cyan); acceptor (mVenus)
excitation and acceptor emission, IAA (yellow); FRET channel, donor excitation, and acceptor
emission, IDA (red). The original field of view is 128 × 128 μm (EM-CCD). Growth cones regions
(red boxes) were selected for processing to calculate FRET efficiency. Under each original image
are the corresponding selected growth cone areas. The field of view in the cropped regions with
the growth cones is 24 × 24 μm2.
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(24.6� 2%, n ¼ 111 images, N ¼ 6 experimental repeats) in the growth cones was lower than
the mean FRET efficiency of TSMod (28.5� 3.6%, n ¼ 68 images, N ¼ 3 experimental
repeats), suggesting that the FRET efficiency of the tension module is decreased when it is
expressed in vinculin (p < 10−6 determined by one-way analysis of variance (ANOVA) followed
by Tukey’s multiple comparisons test). The mean FRET efficiency of VinTS was slightly lower
than the mean FRET efficiency of VinTL (p < 10−3), suggesting that VinTS is under a low level
of tension in the growth cones [Fig. 8(b) and violin plot (Fig. S1 in the Supplemental Materials)].
The FRET efficiency of VinTS and TSMod observed in the second experiment [Fig. 8(b)] cor-
roborates the values found in the first set of data [Fig. 8(a)]. A cumulative distribution function of
pixels obtained from growth cones expressing VinTS is shifted to lower FRET compared to the
distribution of pixels from growth cones expressing VinTL [Fig. 8(c)]. To highlight the spatial
contribution of high and low FRET pixels, we show segregated regions of pixels above and

Fig. 5 (a) Manually segmented contours of growth cones in the cropped IAA channel. (b) Binary
masks corresponding the segmented regions (white) where the FRET efficiency is calculated. The
black regions are excluded from the calculation. (c) Corresponding segmented FRET efficiency
images.

Fig. 4 Registration of the IDD image (red) with the IAA image (green). Image overlays show the
overlap (yellow) between the two images (a) before and (b) after registration for the copped VinTS
and TSMod growth cones images selected in Figs. 2 and 3.
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below 0.25 FRET for growth cones expressing VinTS and VinTL (Fig. S2 in the Supplemental
Materials). The ratio of pixels with FRET efficiency ≥0.25 to pixels with FRET efficiency <0.25
was 0.66 for the growth cones from neurons expressing VinTS compared with 1.55 for those
expressing VinTL.

To assess whether the lower FRET efficiency of VinTS could be altered by inhibiting actin-
myosin contractility, we treated the neurons with the ROCK inhibitor Y-27632. Y-27632 inhibits
myosin II by deactivating the Rho signaling pathway and has been used by others to test the
effects of actomyosin contraction on the measured FRET efficiency of VinTS.12 Unexpectedly,
we found that treatment with 10-μMY-27632 for 2 h did not affect the FRETefficiency of VinTS
expressed in growth cones. Both the average FRET efficiency in the growth cones and the pixel
distributions did not change significantly after treatment (Fig. S3 in the Supplemental Materials).
A two-way ANOVA followed by Tukey’s multiple comparisons test showed a significant differ-
ence between FRET efficiency of the VinTL and VinTS groups (p ¼ 7.84 10−4), but no signifi-
cant difference was observed between the treated and control groups for each construct.

3.3 Timelapse Imaging

The morphology of the growth cones is expected to vary dynamically over time, and the images
analyzed thus far likely represent snapshots of this time-dependent behavior. To probe dynamic

Fig. 6 (a) Montage of background subtracted acceptor intensity images and (b) corresponding
FRET efficiency images of growth cones expressing VinTS.
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changes in FRET efficiency, five growth cones expressing either VinTS or TSMod were imaged
every 5 min over periods varying between 25 and 70 min. The images were refocused before
each capture. In a representative growth cone expressing VinTS (Fig. 10), we observe a rapid
change in morphology where filopodia start forming and the FRET efficiency in the growth cone
changes as a function of time. To illustrate this change, we constructed color-coded images in
which FRET values higher than 0.25 are pseudocolored in red and values under 0.25 are pseu-
docolored in blue [Fig. 10(c)]. At the beginning of the time lapse sequence, there are both high
and low values of FRET efficiency with both red and blue channels clearly visible and inter-
mingled, while only 8% of pixels have low FRET after 30 min. By comparison, in a represen-
tative growth cone expressing TSMod (Fig. 11), >60% of pixels have FRET efficiency higher
than 0.25 throughout the time series. The mean FRET efficiency of the VinTS sample is 0.28 at
time = 0 and drops gradually to ∼0.21 at 50 min., while the mean FRET efficiency of the TSMod
sample remains above 0.27 over the 50-min time period.

For each of the samples tested, the mean acceptor intensity and FRET efficiency were plotted
over time after normalization to the initial value (Fig. 12). The variance in FRET efficiency for
the samples expressing TSMod was 10% [standard deviation of all the values measured as a

Fig. 7 (a) Montage of background subtracted acceptor intensity images and (b) corresponding
FRET efficiency images of growth cones expressing TSMod.
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Fig. 8 (a) Box and whisker plot of FRET efficiency measurements in growth cones from neurons
expressing VinTS and TSMod. *** denotes significance of p < 0.001 by Welch’s t -test. The cross
(×) denotes the mean. The line denotes the median of the dataset, and the top and bottom of the
box denote the 75th and 25th percentile, respectively. The black lines extending from the box
(whiskers) corresponds to the maximum and minimum values, which are not considered outliers.
Individual points above and below the whiskers are considered outliers with values larger than
�1.5× [the difference between the 75th and 25th percentile]. (b) The experiment in (a) was
repeated to include VinTL as an additional control. *** denotes significance of p < 0.001 by
ANOVA followed by Tukey’s multiple comparisons test. (c) Cumulative distribution functions for
pixels from growth cones from neurons expressing VinTS and VinTL [data from (b) only].

Fig. 9 (a) Montage of background subtracted acceptor intensity images and (b) corresponding
FRET efficiency images of growth cones expressing VinTL.
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function of time for the data series in Fig. 12(b)], compared with 16% for the samples expressing
VinTS [data series in Fig. 12(d)], supporting larger variations in VinTS FRET efficiency as a
function of growth cone dynamics compared with TSMod. A drop in the value of IAA at later
time points could be due to photobleaching. However, this decrease in IAA signal was not

Fig. 10 (a) Time-lapse images of background-subtracted and normalized iAA and (b) FRET effi-
ciency of one growth cone from a neuron expressing VinTS. (c) Pixels with FRET efficiency ≥0.25
(red) and those with FRET efficiency <0.25 (blue) are segregated to highlight the spatial
differences in FRET efficiency. (d) Mean FRET efficiency of the growth cone as a function of time.
(e) Area fraction of pixels with high (≥0.25) and low (<0.25) FRET efficiency. The field of view is
24 × 24 μm2 in each image.

Fig. 11 (a) Time-lapse images of background-subtracted and normalized iAA and (b) FRET effi-
ciency of one growth cone from a neuron expressing TSMod. (c) Pixels with FRET efficiency ≥0.25
(red) and those with FRET efficiency <0.25 (blue) are segregated to highlight the spatial
differences in FRET efficiency. (d) Mean FRET efficiency of the growth cone as a function of time.
(e) Area fraction of pixels with high (≥0.25) and low (<0.25) FRET efficiency. The field of view is
24 × 24 μm2 in each image.
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accompanied by a corresponding drop in TSMod FRET efficiency, indicating that FRET
efficiency was not affected by photobleaching at these time points.

4 Discussion

We investigated the expression and FRET efficiency of the VinTS in the growth cones of primary
rat cortical neurons cultured on glass coverslips coated with PDL and laminin. The neurons were
transfected with plasmids encoding either the untargeted tension module TSMod, VinTS, which
consists of TSMod inserted between the head and tail of vinculin, or VinTL, consisting of a
VinTL lacking the actin-binding domain of vinculin. The probes were expressed in neuronal
growth cones at DIV 5 to 8, but they did not clearly localize to punctate regions. The mean
FRET efficiency of TSMod (28.5� 3.6%) in the growth cones was higher than both the mean
FRET efficiency of VinTS (24.6� 2%) and VinTL (25.8� 1.8%) (p < 10−6). The FRET effi-
ciency of VinTS was lower than that of VinTL (p < 10−3). This difference, while statistically
significant, was small and suggests that vinculin is under low tension in neurons at DIV 5 to 8.
By comparison, a lower VinTS FRET efficiency of 20.5% (and therefore higher tension) was
reported at the focal adhesions of live mouse embryonic fibroblasts.48 FRET efficiency was not
correlated with acceptor signal in the growth cones studied (Fig. S4 in the Supplemental
Materials). Thus, the observed decrease in VinTS FRET efficiency is unlikely to be due to a
systematic error in our data caused by an artifact related to the level of measured signal.

To further assess the potential source of the decreased FRET efficiency of VinTS compared
with VinTL, we treated the cells with the ROCK inhibitor Y-27632. We expected short-term
inhibition of myosin II via the Rho signaling pathway to decrease contractility, and therefore,
further decrease the tension across vinculin and increase FRET efficiency to the level of VinTL.
However, a 2 h treatment with 10-μM Y-27632 did not significantly increase or change the mean
FRET efficiency of VinTS in growth cones (Fig. S3 in the Supplemental Materials). In neurons,
the roles of actomyosin contractility in developing growth cones and in mediating changes to

Fig. 12 Mean acceptor signal and FRET efficiency normalized to the initial value and plotted over
time for five individual growth cones expressing (a) and (b) TSMod or (c) and (d) VinTS. VinTS-1
and TSMod-3 correspond to the samples shown in Figs. 10 and 11, respectively.
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tension have not been fully elucidated. A balance between neurite outgrowth and contractility
appears to exist, and myosin II light chain has been studied as a neurite outgrowth regulator. In
hippocampal neurons, inhibition of myosin II by blebbistatin, ML-7, or Y-27632 for 24 to 48 h
increased neurite outgrowth as measured by an increase in process length.49 Similarly, in PC12
cells, neurite outgrowth increased after 2 or 3 h of treatment with Y-27632.50 In the peripheral
nervous system, activation of ROCK results in contractility and growth cone retraction.51

Although tension has not been directly connected to ROCK inhibition, neurite outgrowth and
vinculin distribution were studied in rat hippocampal neurons. Treatment with lysophosphatidic
acid, which activates RhoA, followed by Y-27632 treatment enhanced vinculin recruitment
to the cell body membrane and promoted microtubule assembly in the growth cones.52

Furthermore, other factors, such as cytosolic PSD-95 interactor (cypin), can act downstream
of Rho kinase to regulate dendrite growth and branching.53 Since ROCK inhibition can lead
to more stable growth cones, it is unclear how VinTS FRET changes in response to deactivation
of myosin-II in neurons. Future work may be focused on identifying when neurons form adhe-
sions during maturation in culture, how VinTS FRETand tension changes at these locations, and
whether longer-term myosin II inhibition promotes the formation of such stable adhesions.

Unlike the distribution of vinculin reported by others, we did not observe a distinct punctate
distribution of VinTS at the growth cones. For example, in dorsal root ganglia neurons plated on
laminin-coated substrates, FAK and vinculin are distributed in punctate clusters and are localized
in the central body of growth cones and at the filopodial tips.27 These clusters have been defined
as point contacts, which are small integrin clusters containing adhesion sites that differ in size
and distribution than those in non-neuronal focal adhesions. Point contacts contain both vinculin
and β1 integrins, implying that point contacts are mature adhesion sites.27 In PC12 cells plated on
laminin-coated substrates,28 vinculin is localized in filopodia, lamellipodia, and at branch points
of neurites. Vinculin exhibited punctate staining in the region of growth cones closer to the
neurite.28 Differences in vinculin distribution may be due to differences in the cell types studied,
such as PC12 cells,28 dorsal root ganglia neurons,27,29 or primary cortical neurons in this study. In
addition, the distribution of vinculin may depend on the maturity of the neurons and the stability
of the adhesions within the growth cones.

Since we were unable to locate punctate regions with increased VinTS expression, we based
our results on the average FRET efficiency of the whole growth cone region. However, FRET
efficiency was not always uniform, and pixels with both high and low FRET efficiency could be
found within the growth cone regions (Fig. S2 in the Supplemental Materials). The cumulative
distribution function of FRET efficiency on a pixel-by-pixel basis was shifted to lower FRET in
the growth cones expressing VinTS compared with those expressing VinTL [Fig. 8(c)]. By col-
lecting time-lapse data from representative growth cones imaged between DIV 5 to 8, we also
show that the growth cone morphology and mean FRET efficiency can change dynamically as a
function of time (Figs. 10–12). These changes may reflect attachment and detachment of the
growth cone from the substrate during migration. Thus, it is possible that vinculin distribution
and tension will change during neurite migration before the formation of stable adhesion sites.

One limitation of this study lies in the averaging of a very non-homogeneous and dynamic
population of pixels within the growth cones. In epithelial cells, the analysis may be confined to
stable focal adhesion sites where vinculin is highly expressed and is expected to be under ten-
sion. Our inability to identify such sites in the growth cones prevented us from performing a one-
on-one comparison between VinTS and VinTL at specific locations where vinculin is expected to
be under tension. Instead, our analysis included regions where VinTS may not have been under
tension to begin with, potentially resulting in the very small difference between the FRET effi-
ciency of VinTS and VinTL. Our inability to identify stable adhesion sites also confounds the
effect of the ROCK inhibitor Y-27632 that we measured by considering all pixels within the
treated growth cones and by comparing different populations of treated and untreated neurons.
In particular, sensitivity to a decrease in tension after Y-27632 treatment may be limited on
a background of low tension and high FRET efficiency. Rather than measuring the effect of
Y-27632 in all pixels in different populations of growth cones, the expected decrease in tension
in response to myosin inhibition may have been observed by measuring VinTS FRETat the same
location over time and starting at adhesion points initially under tension as may be done in
epithelial cells. However, in the growth cones that we imaged at DIV 5 to 8, we were unable
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to identify such clear adhesions. While we could identify regions of high vinculin expression,
these regions were not specifically associated with low FRET (high tension). In fact, based on
our dynamic data (Fig. 10), such putative adhesion locations, or regions at which vinculin is
highly expressed, seem to change within an extending growth cone such that there did not seem
to be stable positions with characteristic morphology as is the case with focal adhesions in epi-
thelial cells. Future work may, therefore, be focused on elucidating these dynamic changes and
specifically tracking the movement and FRET efficiency of pixels with high vinculin expression.

In conclusion, our results provide a basis for studying the dynamics of vinculin tension in
neuronal growth cones. Future studies may be aimed at further characterizing the effect of mor-
phological dynamics on localized changes in VinTS spatial distribution and FRET efficiency.
The system may be mechanically perturbed by plating the neurons on surfaces with different
stiffnesses, ultimately leading to further understanding of vinculin tension dynamics in growth
cones. The use of optical tweezers in conjunction with FRET force sensors has also been
proposed.54
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