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Abstract

Significance: Mesoscale neural imaging in vivo has gained extreme popularity in neuroscience
for its capacity of recording large-scale neurons in action. Optical imaging with single-cell res-
olution and millimeter-level field of view in vivo has been providing an accumulated database of
neuron-behavior correspondence. Meanwhile, optical detection of neuron signals is easily con-
taminated by noises, background, crosstalk, and motion artifacts, while neural-level signal
processing and network-level coordinate are extremely complicated, leading to laborious and
challenging signal processing demands. The existing data analysis procedure remains unstand-
ardized, which could be daunting to neophytes or neuroscientists without computational
background.

Aim: We hope to provide a general data analysis pipeline of mesoscale neural imaging shared
between imaging modalities and systems.

Approach: We divide the pipeline into two main stages. The first stage focuses on extracting
high-fidelity neural responses at single-cell level from raw images, including motion registration,
image denoising, neuron segmentation, and signal extraction. The second stage focuses on data
mining, including neural functional mapping, clustering, and brain-wide network deduction.

Results: Here, we introduce the general pipeline of processing the mesoscale neural images. We
explain the principles of these procedures and compare different approaches and their application
scopes with detailed discussions about the shortcomings and remaining challenges.

Conclusions: There are great challenges and opportunities brought by the large-scale mesoscale
data, such as the balance between fidelity and efficiency, increasing computational load, and
neural network interpretability. We believe that global circuits on single-neuron level will be
more extensively explored in the future.
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1 Introduction

Recording neural activities in vivo with optical systems and genetically encoded fluorescence
indicators provides an observation window for neural scientists to understand the signal process-
ing procedure of individual neurons and the circuitry of neural network in action. Compared with
electrophysiological methods, optical imaging in vivo is typically less invasive and could record
several brain areas up to millimeter-level field of view (FOV) at cellular resolution.1,2 Animal
surgeries, such as cranial window, thinned skull, or crystal skull3,4 provide the optical imaging
window for one-photon imaging to achieve single-cell resolution in the superficial cortex, such
as layer 2/3. Optical neural imaging has thus been used to investigate neural structure change,5,6

brain state alteration,7 and information flow while the animal performs a specific task. Profound
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discovery has been made by in vivo neural imaging on crucial neuroscience issues, including
perceptual input processing,8,9 motion,10,11 learning,12,13 memory,14,15 and decision making.16

To date, multiple imaging modalities are capable of mesoscale recording with single-
cell resolution and millimeter-level FOV, such as single-photon widefield microscopy,3,17

multi-photon microscopy,18,19 light-field microscopy,20,21 and light-sheet microscopy.22 A
recent review2 has described the mesoscale imaging techniques and related animal models
in detail, which also points out its increasing importance in neuroscience. While the challenges
and opportunities brought by the large-scale mesoscale data have been gradually realized by
the community,2 there is still not a comprehensive review about the existing mesoscale analysis
methods, remaining problems, and potential future directions. Here, we intended to provide a
general data analysis pipeline for cellular level mesoscale neural imaging without focusing on
any specific imaging modality. We emphasize the commonalities between different image sys-
tems. For instance, the data analysis always starts with neural images from detectors and ends
by useful information extracted from calcium signals. Some imaging modalities have their
unique preprocess algorithm before acquiring the neural image, such as slice stitching in
light-sheet microscopy and volume reconstruction in light-field microscopy. These are beyond
the scope of this work. However, we do illustrate the specific priors in data analysis processing,
which can be considered based on different imaging modalities, during our detailed descrip-
tions of each processing step. For readers who might be not familiar with microscopy systems,
we briefly review the image modalities used for in vivo neural dynamic imaging in the follow-
ing paragraphs.

In the past decades, benefitting from the rapid development of both microscopic systems17,23–25

and fluorescent indicators,26,27 in vivo neural imaging has been extending its capability in faster
sampling speed, higher resolution, larger FOV, and lower phototoxicity.28 The simple wide-field
microscopy could cover several adjacent cortex areas,29 but it does not typically achieve
cellular resolution because of scattering and aberration. Several recent works have shown capa-
bilities to extract single-cell information in wide-field data even with strong background fluo-
rescence by matrix factorization and deep learning.30,31 In addition, animal models and new
fluorescence indicators with specific labeling strategies can greatly reduce the background fluo-
rescence in normal wide-field microscopes, facilitating single-cell resolution neural recoding
with simple systems, e.g., layer-specific labeling,3 and soma-targeted sensors.32,33 In addition,
with special optical designs, several works have been done to further increase the resolution or
depth of field with better fidelity to retrieve the single-cell neural traces. For instance, in the
RUSH system,17 a 5 × 7 camera array was tiled to cover centimeter-level FOV and reach
0.8-μm resolution with dense sampling density and layer-specific neuron labeling; the COSMOS
macroscope4 uses multifocal optical sampling to record in-focus projection of 1 cm × 1 cm ×
1.3 mm volume at near cellular resolution (1–15 neurons/unit). To examine the on-focus slice
only, confocal microscopy34 and light sheet35 microscopy were designed by either blocking out
the out-of-focus light or illuminating a thin slice of the tissue from the side. These techniques
have enabled optically sectioning of the brain tissue with three-dimensional (3D) resolving
power through scanning strategy. Nevertheless, the resolution of single-photon microscopy
degrades tremendously with the increase of penetration depth,36 thus it was only useful in
detecting neurons in shallow cortex layers. Multiphoton microscopy (MPM), on the other hand,
holds the advantage in penetration depth37 and low photodamage. Multiple photons with lower
energy cooperate to excite the fluorophore with a nonlinear absorption rate to light intensity.
Hence, MPM was widely used to image deep mouse brain.38,39 Gradient index microlenses fur-
ther extended the imaging depth to even deeper brain nuclear by affecting the optical path of the
exited fluorescence.40

There have been emerging computational techniques for high-throughput 3D volumetric
imaging.41 In two-photon microscopy, 3D imaging is accomplished by quickly scanning the
sample with single-dot or slice excitation which could be either sequentially or randomly.42

Yet the sampling frequency is essentially limited by the control frequency of the mechanical
actuator and the inertia of the optical system. An alternative approach was through multiplexing.
A multi-focus microscope acquires multiple depth information by multi-focusing optical
path19,43–45 or point-spread function engineering.18,46 Light-field microscopy captures the 3D
information efficiently in a tomographic manner with extended depth of field along different
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angles.47–49 While scanning light-field microscopy significantly increases the spatial resolution
in multi-cellular organisms,20 confocal light-field microscopy,21 or computational optical
sectioning50 further increase its signal-to-background ratio in brain tissue. These techniques have
enabled parallel volumetric imaging, capturing over thousands of neurons at cellular level with
dozens of volumes per second.

Apart from benchtop microscopy systems where animals are head-fixed, head-mounted
miniature microscopies would allow animals to freely move in experimental environments.
Miniature microscopes could facilitate studies that are better performed in unrestrained subjects,
such as spatial navigation, social behavior, and reward-seeking. To minimize the weight and size
of the system, light-emitting diode, image acquisition chips, and miniatured lenses are com-
monly used in miniature microscopy. Progress has been made in miniature systems with milli-
meter-level FOV and near cellular resolution.51,52

Unlike electrophysiology detection, optical detection relies on the photon transmission of
the genetically encoded indicators and the optical sensor. The optics and electrics conversion
occurred twice during the imaging process, once by optical bio-indicator, once by the camera
sensor. The indirectness of the signal detection results in potential signal corruption and recon-
struction indispensability. In the meantime, mesoscale neural imaging usually features with
an extremely large data throughput across multiple scales. These barriers of signal recovery
have strengthened the essentiality of efficient and accurate computational approaches to extract
high-fidelity neural activities from large-scale raw images captured by mesoscale imaging
systems.

Here, we review recent data analysis methods for mesoscale intravital neural imaging along a
general data-processing pipeline divided into two main stages (Fig. 1). Stage 1 includes several
image processing procedures and outputs the compressed spatial-temporal single-neuron
traces.53,54 Stage 2 includes various data-mining methods to interpret mesoscale neural signals
both at the cellular level and network level. First, the video captured by the camera sensor should
be registered to a template. Image sequences can be motion-blurred because of the heart-beating,
breathing, or moving gestures of the animal. To identify specific neurons across a long term, all
frames should be registered to a reference position. The second step is image denoising, the
method of which depends on different signal-noise ratios (SNRs) and imaging modalities.
Lower laser power is always preferred with in vivo experiments due to phototoxicity, in which
case Poisson noise usually dominates over the readout noise and dark noise with high-speed
high-sensitivity detectors. Under low-light conditions, computational denoising methods
become indispensable because the noise can easily corrupt the down-stream analysis and inter-
fere the interpretation of the neural activities. Calcium fluorescence signals might also be inter-
fered by hemodynamic, which should be corrected before signal extraction. After this, the 4D/3D
stack [3D/2D spatially and one-dimensional (1D) temporally] of the brain tissue is ready for
neuron signal extraction. The goal of signal extraction is the demix of spatial-temporal infor-
mation embedded in the fluorescence image. Neurons need to be spatially segmented from the
brain tissue background, and their temporal traces are extracted from the temporal sequence of
the image stack. These two steps could be performed sequentially by first determining the posi-
tion or footprint of the neurons and averaging the relevant pixels for temporal traces, or parallelly
by treating the spatial-temporal dimension as equivalent dimensions and utilizing the low-rank
prior to perform a tensor-factorization. After the signal extraction step, the data size should be
reduced to several megabytes (MBs) and could be represented as two 2D matrixes containing the
temporal trace of neurons and their spatial footprints. The following analysis of the neuron trace
could be diverse depending on the research problem. Generally, there are two levels of analysis.
The first level is to investigate the single-neuron property, such as their tuning curves and the
post-stimulus time histogram. The reaction patterns of these neurons may be used to analyze
their relationship to certain stimuli or behavior. The second level of analysis extends the scale to
local or global circuits formed by single neurons. These kinds of studies aim to infer the mes-
oscale functional network connection between the neurons to reconstruct the calculating strategy
the neural circuit uses to accomplish specific signal processing missions.

In the following sections, we will review recent data analysis methods in each step. And we
classify and evaluate different approaches in algorithm feasibility, scope of application, and pre-
cisions. The first stage which aims at a precise and efficient extraction of neuron traces is
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introduced in Sec. 2; in Sec. 3, we introduce the second stage which explores the underlying
neural property and functional circuits through these mesoscale imaging data. Finally, in Sec. 4
we discuss the prospects and remaining challenges for mesoscale neural signal analysis.

2 Image Processing and Signal Extraction

2.1 Image Preprocess: Motion Registration, Denoise, and Hemodynamic
Correction

Calcium imaging is often accompanied by motion artifacts, even if the animal was head-fixed
and anesthetized. In head-fixed experiments, the non-rigid warping of the brain tissue could be
caused by heart-beating, breathing, or the shrinking of the tissue from exposure to the laser.
Moreover, with freely moving animals, the motion artifact becomes even more severe, because
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Fig. 1 General pipeline of analyzing mesoscale fluorescence functional neural images. The whole
pipeline is summarized into two main stages. The first stage targeted at spatial-temporal demixing
of neural signals and the second stage targeted at data mining. Each stage contains a sequence of
processes, which is framed up with a dashed-line box. (a) Image preprocesses includes three
steps: motion registration, denoising, and hemodynamic correction. (b) After calcium signal extrac-
tion, the raw video sequence is decomposed into the spatial information of each neuron and their
temporal fluorescence signals. (c) Task-relevant neurons only make up a small proportion of total
neurons, thus should be recognized through statistical tests. (d) Linear and non-linear regressions
map the test-relevant variables such as performance accuracy, gesture and choice into single-
neuron traces, thus revealing the functional role of each neuron. (e) Similarity matrix based on
correlation, cross entropy and causality could be used to analyze statistical dependencies
between neurons and induce the neuron cluster community and neural network.
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the posture changes induce relative movement of the head and objective lens. In long-term obser-
vation experiments, which expand several hours or days, as well as experiments involving
different animal subjects, the distortion between frames becomes relatively severer.

We usually assume the stability prior during the calcium extraction step. Thus, an efficient
motion-correction algorithm improves the accuracy of neuron extraction. Motion registration is
often conducted by transforming each frame toward a reference frame using a mapping function.
Linear transformations could be described by a linear matrix. Consider a 2D images as an exam-
ple (3D volume could be generalized through adding an element to the coordinate vector). The
mapping function between the coordinates x ¼ ½x1; x2; 1�T and x 0 ¼ ½x 0

1; x
0
2; 1�T of the corre-

sponding sample points could be described as a 3 × 3 linear transformation matrix T, where
x 0 ¼ Tx. The number of free parameters in T determines the transformation type, which could
be divided into rigid transformation (translation and rotation) and non-rigid transformation (sim-
ilarity, affine, and scaling)55 [Fig. 2(a)]. Nonrigid or nonlinear transformations could also
be realized by first splitting the image into overlapping patches to perform rigid correction, and
merging the patches inversely for an partition-based non-rigid transformation field.57 In head-
fixed experiments, rigid transformations are usually sufficient for correction of a FOV smaller
than 1 mm, and in mesoscale-imaging and freely moving animals, the non-rigid registrations are
often demanded. 3D volume non-rigid registration raises the challenge of high computational
load. The implementation of the graphic processing unit (GPU)-enhanced algorithms may be
considered in large dataset registration missions. In some specific algorithms, the acceleration
rate could be up to 100-fold.58

There are both inter-frame motion artifacts and intra-frame motion artifacts in neural imag-
ing. The former exists widely in almost all kinds of microscopic modalities with the morpho-
logical shifting of the brain tissue. And the latter exists mainly in MPM because of the pixel-level
temporal incoherence of sampling by point-scanning strategy [Fig. 2(b)]. Inter-frame motion
artifacts are relatively more rigid than intra-frame motion artifacts, because there is usually
no distortion within a single image, and a reference image is easier to find. A reference frame
could be determined by visual inspection or averaging adjacent frames. All other frames could be
registered to the reference frame.59 The features used for registration could be pixel intensity,60

extra structural channel,61 or exogenous landmark.62 A similarity measurements, such as pixel-
wise difference, correlation, and information theory-based indexes, can also be used to evaluate

T (x+Dx,y+Dy)

I(x, y)

Template Translation Rotation

Scaling Affine Projective

Fixed image Moving image

Similarity measure Interpolator
Pre-registration 
transformation 

(optional)

Optimizer Geometric 
transformation

Scan mirrors

B
ra

in
 ti

ss
ue

di
sp

la
ce

m
en

t (
µm

)

Time (ms) Time (ms)

D
is

pl
ac

em
en

t 
di

ffe
re

nc
e 

(µ
m

)

(a) (b)

(c) (d)

Fig. 2 Inter-frame and intra-frame motion artifact correction. (a) Inter-frame motions are global
transformations of the whole image which include rigid transformation (translation, rotation, and
uniform scaling) and non-rigid transformation (scaling, affine, and projective). (b) Intra-frame
motions render as pixel-wise displacement, which is usually caused by the motion during point
scanning in multi-photon microscopies. (c) Diagram of intensity-based registration methodologies
for inter-frame motion registration. (d) Example estimated trace produced by Lucas and Kanade
algorithm, showing the displacement of the specimen in x (black) and y (cyan) directions in each
frame and displacement difference between the two frames. Panels (b) and (d) are adapted from
Ref. 56. Panel (c) is adapted from Ref. 55.
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the difference between the reference frame and the moving frame. An extra regulation term of
deformation was often included, to ensure the sparsity of the deformation field63 and avoid over-
fitting. Finally, various optimizers, mostly based on gradient descend theory, were designed to
search for the best transformation parameter of the mapping function [Fig. 2(c)]. A thorough
review of inter-frame motion artifact correction was given by Oliveira and Tavares.55 Intra-frame
motion artifacts were commonly corrected based on the Lucas and Kanade64 algorithm
[Fig. 2(d)] or a hidden Markov model,65,66 where each pixel (or each line) was considered
to be sampled from a translated tissue at an independent time-point.56,67 The Lucas and
Kanade algorithm expresses the difference between the registered frame and the template frame
as the function of the x-y trajectory. The optimal estimation of trajectory was derived by setting
the first-order Tayler expansion of the error function to zero. And the algorithm iteratively
updates the displacement in the x-y axis, until it converges to an optimal x-y displacement trace
which minimizes the difference to the template. To reduce the computational cost, hierarchical
approaches of image registration were proposed, where the imaging video was first decomposed
into stable and non-stable sections, and different levels of registrations were assigned to the
sectioned images.68

Apart from lateral motion, axial drifting eventually drew the researcher’s attention with the
evolution of increasing imaging time and resolution demand. In 2D parallel imaging, z axial
motion correction could be accomplished by a hardware-implemented strategy of real-time focal
plane adjustment,69 or by computational approaches of calculating the correlation between the
time-sequence z slices and a reference cube.61,65 In high-speed volumetric imaging, the defocus
problem is naturally resolved in a certain axial range because it could capture multi-focus planes
at high speed. The z axis displacement could be equivalently resolved like the x-y displacement
by simply adding one more dimension to the registration pipeline. Since the axial displacement
could not be avoided completely, volumetric imaging is much more robust to 3D motion artifacts
compared with plane-scanning or point-scanning approaches.

A second image processing issue is denoising. Higher-SNR images are always preferred
since it enhances the efficiency and fidelity of neuron detection and signal extraction. The sim-
plest solution to acquire a higher-quality image was to use higher laser intensity. But it comes
with photobleaching, nonlinear phototoxicity, and heating damage, which interferes with the
fundamental neurophysiological phenomenon.70 Meanwhile, it is worth noticing that under
lower light conditions, photon shot noise becomes comparable to the readout noise of the camera
sensor, where the hardware implementation could no longer eradicate noises. Therefore, to facili-
tate subsequent analysis, data-driven methods become critical.

Image denoising is routinely done by balancing the data fidelity and prior knowledge.71

Commonly used priors in fluorescence imaging include sparsity prior,72 also known as low-rank
prior,73,74 and sensor physics-based noise distribution prior.75 Sparsity prior implies that spatial-
temporal adjacent blocks in the image would have similar distributions. In other words, high-
frequency components are dominated by unwanted noises and should be suppressed selectively.
Different methods were used to exploit the sparsity priors. The most general method is to add a
regularization term to the image reconstruction target function, which constrains the coefficient
density in the transformation domain.76 The deconvolution or image reconstruction optimization
problem subsequently becomes a multi-target problem. The multiple targets could be decoupled
under an alternating direction method of multipliers framework, leading to hybrid iterations of
image reconstruction and denoising,73,77 where the data fidelity term and the sparsity term are
optimized iteratively. Within the sparsity sub-step, the parameters of the data fidelity term were
fixed and the sparsity prior term was optimized, vice versa in the fidelity sub-step. There are
various strategies to meet the sparsity prior. A straightforward approach is setting a threshold
(soft or hard) cut-off in transformed domain72,75,78,79 (Fourier transformation domain, cosine
transformation domain, wavelet transformation domain, or a learned over-complete dictionary).
The cut-off suppresses the high-frequency components and makes sure that the image frequency
spectrum dominantly concentrates on low-frequency bands. Sparsity could also be attained using
block-matching approaches. In block-matching-based algorithms, spatial-temporal adjacent
blocks within the searching window were vectorized and concatenated into a matrix. The sin-
gular value decomposition was performed on the matrix, and then a hard or soft threshold was set
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to suppress the low-energy components.80 It was proved that this kind of strategy could effi-
ciently reduce noise and preserve the details.72,78

Deep-learning methods have facilitated great advances in bioimage denoising.81 Artificial
neural networks were used to explore the underlying features and recover the noise-degraded
images efficiently. There are two kinds of training strategies to train a network, supervised and
unsupervised. The supervised strategy requires corresponding noisy and noise-free images to
work as training data, and iteratively optimizes the network parameter using gradient descent
strategy. In structural imaging in vivo, the training dataset could be acquired by pre-tests, where
laser-insensitive specimens are used as subject.82 And the pre-trained network could then be used
to denoise the laser-sensitive specimen under low light conditions. While in functional imaging,
this strategy might be problematic due to the non-repetitiveness of calcium transients, leading to
the lack of training data for supervised learning. Therefore, self-supervised training was applied
in functional neural image denoising issues. The network used solely noisy data as input and
output in training. By utilizing the Noise2Noise framework83 and temporal redundancy prior,84

the network successfully produced noise-free images in test sessions. Thus, the self-supervised
framework overcomes the obstacle of dataset shortage and is also practical in functional neural
image missions.

Resolution maintenance is a vital concern in denoising algorithms designed for microscopy.
Overall, the state of art frameworks such as local block-matching strategy and deep-learning
network have less resolution loss compared with conventional transformational domain cut-off
algorithms. But the performance is usually sample-specific and optical system-specific, and
could not be easily summarized. The robustness is particularly a vital problem in deep-learning
methods. Actually, there is a risk of resolution loss in every denoising algorithm because imaging
denoising is essentially an ill-posed inverse problem. And there is a fundamental trade-off
between detail preservation and denoising performance, in other words, the data fidelity and
the prior knowledge. The ability of resolution preservation depends mainly on the accuracy
of modeling the signal distribution and noise distribution, which requires the expertise on im-
aging system and sample property from researchers.

The following step of image preprocess is hemodynamic correction, which is typical in
wide-field microscopy but is insignificant in two-photon microscopy. The blood flow in ves-
sels has an impact on the background fluctuation of the neural image, which is exhibited as a
large-variance and low-frequency background signal component. This component is calcium-
irrelevant and should be removed. The most common approach to correct the hemodynamic is
adding an extra reference channel with a specific excitation wavelength whose emission is
calcium-independent.16,85 The captured fluorescence intensity was divided by the reference
channel, Fc ¼ F

R, where Fc is the corrected signal; F is the calcium channel signal and R
is the reference channel signal. The corrected normalized signal could be further expressed

as ΔFc ¼ Fc−Fc0
Fc0

¼ F∕R
F0∕R0

− 1 ¼
F0ð1þΔFÞ
R0ð1þΔRÞ

F0
R0

− 1 ¼ 1þΔF
1þΔR − 1 ≈ ΔF − ΔR, where subscript 0 stands

for averaged signal; ΔF ¼ F−F0

F0
, ΔR ¼ R−R0

R0
; the last equation is derived through a first order

Taylor expansion. Another approach without extra reference channel is modeling the hemo-
dynamic as background signal while performing calcium extraction. This computational
approach relies on priors of calcium trace patterns and has no extra hardware cost.
Detailed descriptions can be found in the next section.

2.2 Neuron Segmentation and Calcium Trace Extraction

After the image processing pipeline, the fluorescence images are low-noise and spatially settled
and are ready for neuron segmentation and signal extraction. This session describes the methods
used to extract fluorescence traces (or equivalent spike trains) and spatial footprints from the raw
optical images. The data size should thus be reduced to several MBs which filters out the back-
ground fluorescence from neuropils, gliocytes, hemodynamic, and out-of-focus background
while keeping all the neural-coding information intact. Compared with the raw optical video
which might be up to hundreds of GBs or even TBs, this process could be regarded as data
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compression or dimensionality reduction. Further neural functional and network inference could
entirely rely on the extracted spatial-temporal footprint matrix.

An intuitive way of signal extraction is first segmenting individual neurons as regions of
interest (ROI), and then calculating the (weighted) average temporal brightness of these pixels
as the temporal trace. This kind of approach relies heavily on the imaging quality and meticulous
identification of the shape and size of the neurons, which could be diverse between different bio-
sensors and imaging modalities and often requires the expert knowledge of the researcher.
Analytical approaches would assume neuron somas to be roughly circular in shape and flicker
at a certain frequency periodically. Based on these assumptions, several image segmentation
methods are used. First, the pixel-wise maximum deviation from the average brightness11,86

or the standard deviation (SD) over time is derived to form an active map, from which neuron
ROIs could be highlighted. Segmentation methods are subsequently used, ranging from
manual approaches11,65 to automatic algorithms. Manual ROI selection may be laborious but
assures high ROI quality, which is suitable for small datasets. There are several software imple-
mentations available for manual ROI selections with the aid of automatic initializations, such as
ImageJ,87 SIMA,66 and SamuROI.88 Automatic algorithms for the segmentation are mainly based
on computer vision theories, such as kernel filtering89 and graph-cutting theory.66 Deep-learning-
based methods have also achieved state-of-art cell-segmentation performance,90–93 while the
conventional shortcomings of lack of training dataset, computational cost, and algorithm robust-
ness to different imaging modalities and SNR levels are gradually increasing. Separation of over-
lapped neurons is a major challenge currently faced by deep-learning approaches. The
anisotropic resolution further aggravated this problem. Different deep-learning methods adapted
diverse strategies to tackle this issue. For instance, in U-Net91 framework, the boundary between
cells was artificially inserted into the mask of the training dataset, and the corresponding weight
of the ridge was increased to force the network to learn the boundary, so overlapped cells were
forced to be split into two non-overlap parts. In STNeuroNet,92 overlapped neurons were split
using watershed algorithm, and the temporal trace was demixed using a linear regression
approach.94 This would allow overlapping neurons to be separated spatially and temporally.
And in Shallow U-Net Neuron Segmentation (SUNs),95 segmentation was done frame-by-frame
and followed by a merging procedure, in which case overlapped neurons firing at distinct frames
could be separated. In the meantime, recent methods with multi-view imaging and
reconstruction96 can alleviate the anisotropic resolution, which may also increase the fidelity
of segmentations.

The main drawback of the active-map-based segmentation is its high missing rate for inactive
neurons and neurons with lower fluorescence indicator expression [Fig. 3(a)]. Another com-
monly used neural detection approach is matrix factorization. The core framework of these meth-
ods is to factorize the spatial-temporal matrix F ∈ RN×T into spatial component S ∈ RN×K and
temporal component A ∈ RN×T [Fig. 3(b)]. Each column of F containing N pixels is one of the
T vectorized frames of the microscopic video. Ideally, S should contain K neurons’ shapes
and locations in every column. And A contains the corresponding temporal traces of these
neurons. Additionally, there are also noise E and background signal B in F, which could be
written as

EQ-TARGET;temp:intralink-;sec2.2;116;231F ¼ SAþ Bþ E:

If assuming the spatial location of each neuron does not shift through time, which is
facilitated by the previous motion registration process, SA could be further factorized into
sum of K neuron’s temporal traces. Thus SA could be represented as the sum of K rank-1
matrixes.

EQ-TARGET;temp:intralink-;sec2.2;116;151SA ¼
XK

k¼1

skaTk ;

where sk is the k’th column of S, and ak is the k’th row of A.
There are infinite solutions to the factorization problem if non-constrains are set. If using only

the least square of error as the criterion, the formula leads us to rank-k approximation problem,
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which is well solved by singular value decomposition, also known as principal component analy-
sis (PCA). However, the PCA method alone might be ill-suited to extract single-neuron signals,
since every principal component might contain information from multiple cells.97 A further
assumption is made about the statistical independence of each component, which leads to in-
dependent component analysis (ICA). ICAwas proved to outperform PCA in identifying single-
neuron cells.97 Sparsity prior is another prior apart from independence. Sparse heterarchical
matrix factorizaion99 with dictionary learning is used to segment neurons and then cluster them
into hierarchical functional clusters and reveal the network structure of functional circuits.
Moreover, stricter priors of the shape and calcium response pattern could be made100 which
narrows down the solution space furthermore. Non-negative matrix factorization (NMF) method
puts non-negative constraints on spatial and temporal matrix,30,101 which is intuitive considering
the non-negative nature of optical images and calcium activity traces. The NMF method per-
forms better on noisy data compared with ICA and was widely adopted by a series of improved
algorithms, such as constrained nonnegative matrix factorization (CNMF),102 CNMF for micro-
endoscope data (CNMF-E),98 and CNMF with M-estimator to background103 [Fig. 3(c)].
However, CNMF with 3D long-term mesoscale video dataset faces the burden of large computa-
tional costs up to thousands of GPU-hours.104 Several accelerated algorithms are reported, such
as seeded iterative demixing (SID)104 and online deconvolution of calcium image.105,106 Deep-
learning algorithms can also be exploited in the future to further reduce the computational costs
with more data priors.31

The fluorescence trace normally provides sufficient information as spike trains, since the two
modalities are convertible through convolution and deconvolution. However, when precise tim-
ing information is wanted, deconvolution may be conducted to improve the data quality.54 Under
CNMF and OASIS framework, the binary spike train is embedded under the autoregressive
model of calcium impulse response and could be achieved through primal optimization. If the
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Fig. 3 Calcium extraction via ROI-based approaches and matrix decomposition. (a) Comparison
of ROI analysis and decomposition methods. The ground-truth responses are marked by gray
lines. (a1) A simulated image which contains three spatially overlapping signal sources colored
in red (Bergmann glial fibers), blue and green (Purkinje cell dendritic trees). The background con-
tains black vessels and bright interneuron somata. (a2) ROI analysis identified spatial filters (left)
of cellular components and their temporal traces (right). (a3) Matrix decomposition method reveals
the spatial footprint (left) and their temporal traces (right). The signal estimation is more accurate
than the ROI based-approach shown in (a2). (b) Schematic illustration of matrix decomposition
methods on neural video. The video matrix was factorized into K rank-one matrixes, each of which
stands for the location and temporal activity of an individual neuron. (c) The performance com-
parisons of PCA/ICA, CNMF, and CNMFE on simulated data. Panel (a) is adapted from Ref. 97.
Panel (c) is adapted from Ref. 98.
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segmentation was done using ROI strategies, where spikes were not directly accessible, greedy
template fitting was commonly used for spike event detection.8,107,108

Another common operation on the fluorescence trace is signal normalization, which extracts
the mean activity of each neuron and calculates the difference from average score as ΔF∕F.
These normalizations could further exclude the influence of incoherent background fluorescence
and facilitate the analysis of neural functions.

3 Functional Mapping and Network Inference

At this phase of analysis, the information from fluorescence video is compressed into a 2D
matrix X ∈ RN×T containing the temporal traces of each neuron and the spatial maps of their
locations on the brain atlas. The i’th row of X represents the temporal trace of the ith neuron,
lasting T frames in total. The information encoded in X is, to a large extent, similar to electro-
physiological signals. The only difference is that optical signals reflect calcium transient inten-
sity for calcium indicators (or other transient intensity for specific indicators such as voltage
and other neurotransmitters), while electrophysiology signals reflect spike trains. These two
modalities could be equivalently converted via event detection (deconvolution) and kernel con-
volution algorithm. Hence, the analysis methods used for these two modalities are generally
consistent. In the following sections, we will introduce generic methods on functional mapping
and network inference which would be appliable in both electrophysiological and fluorescence
signal analysis, unless otherwise noted.

3.1 Functional Mapping on Single-Neuron Resolution

An emerging challenge for mesoscale optical recording of neural signals is that task-relevant
neurons only take up a small proportion of captured neurons and might be spatially dispersed
over the FOV.109 Most of the neurons over the cortex encode spontaneous and uninstructed
movements unrelated to the task.110 Including all these neurons in analyses would cost large
computational costs and introduce undesirable noises, which reduce the SNR of the neural
encoding space. Thus, a first and foremost step before functional analysis is to discriminate the
task-relevant neurons from the massive number of entire neurons.

A forthright intuition is to select neurons that exhibited a more active firing pattern during the
task [Fig. 4(a)]. The degree to which task events modulate neuron activities could be evaluated
through statistical significance tests by comparing the averaged firing rate between task trials and
baseline.109 Diverse time windows could be used, such as pre-stimulus, post-stimulus, and post-
movement onset, depending on the interested task variable. However, the significance test
employs nothing on the unique distribution of individual neuron activity prior. Neurons with
periodic firing or with extremely active or inactive firing properties may be misjudged by stat-
istical tests. Thus, an alternative option is to perform a shuffle test on the same neuron’s activity
trace. Shuffling the start time stamp of behavior segments11 or shuffling the timepoint of calcium
events8 are both feasible. The same firing rate average analysis is performed on the shuffled data.
The significance of task modulation is evaluated through how many percentiles of the shuffled
data the primary data could exceed.

Significance tests revealed the overall task modulation on the firing rate during a task period.
But within a complicated task, there might be more than one task variable, such as engagement,
choice, precision, and body gestures. Statistical tasks based on mean firing rate perform badly on
separating these fine variables or revealing the non-linear neural representation. To uncover the
relationship between single-neuron activity and animal behaviors, superior data analysis meth-
ods should be employed.

Linear regression, also known as general linear modal is an effective method for exploring
data correlations. The regression modal could be expressed as y ¼ Xβ,108 where β is a concat-
enated event kernel vector to be regressed. X ∈ RT×L is a Toeplitz design matrix concatenated by
K events of interest Xk, where Xk ∈ RT×Lk ,

P
K
k¼1 Lk ¼ L, X ¼ ½X1; X2; : : : ; XK�. Xk contains

diagonal 1s at each event onset and corresponding time lags and 0 elsewhere. y is the normalized
neuron trace time course as the prediction output. The link strength between the neuron trace and
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the behavior variable could be evaluated through the coefficient in β. A larger absolute value in β
stands for a higher correlation between neuron and behavior. The spatial-temporal map of β
could also indicate the information flow between different neuron clusters. To avoid overfitting,
different regulation terms are added to rescript the sparsity of the coefficient, which make the
model more practical, such as reduced-rank kernel regression,109 ridge regression108 or lasso
regression110 [Fig. 4(b)].

In perceptual pathways, such as tactile, olfaction, and vision, neural coding mechanisms are
often better explored, thus allowing more accurate and complicated modeling of neural activities.
For instance, in the tactile sensory pathway, the functional mapping modal assumes that the
sensory input goes past static, point-wise nonlinearity, and is convolved with a temporal kernel
before being input to a Gaussian noise model.8 While in the olfaction pathway, different olfac-
tory is believed to be encoded by population vector instead of single-neuron activities.9 And in
the visual pathway, the ganglion neurons are well known to be modulated by surrounding neu-
rons, forming the widely recognized receptive field.111 These models successfully predict the
activity in the local circuit with high accuracy and specificity.
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Fig. 4 Examples of functional mapping and functional circuit identification. (a) Schematic of task-
relevant neuron evaluation. About three example neuron traces are shown with three stimuli as
event triggers (dashed lines). In statistical test approaches (top), the fluorescence intensity in the
pre-stimulus baseline window (shaded in gray) is compared with post-stimulus time windows
(shaded in green), deriving the significance index. In shuffle test approaches (middle), post-
stimulus reactions in the shuffled dataset are compared with observed true reaction, where a
P-value is defined as the percentile of exceeded shuffled data by the observed data. In the kernel
regression (bottom) method, the linear model was used to predict the neuron response from the
event design matrix. The link between the task and the neuron activity is evaluated via the regres-
sion coefficient β. (b) Example weight maps of event kernel for right visual stimulus and nose
movement at pixel-level. (c) Diagram of correlation-based functional clustering at the voxel level.
The correlation matrix of the pre-selected supervoxels is manually inspected and a reference trace
is selected. Each voxel in the brain is correlated to the reference trace, forming a correlation map.
Green, positive correlations; magenta, negative correlations. Panel (b) is adapted from Ref. 110.
Panel (c) is adapted from Ref. 60.
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Comparing the modal-free analysis with the model-based analysis, the former is more helpful
for rough neuron sorting from mesoscale images, while the latter uncovers the explainable
mechanism of neural encoding. Thus, we advocate taking advantage of the high data-throughput
property of mesoscale imaging as a neural information database, from which neuron clusters
could be distinguished and separated depending on their functions. While the subsequent mod-
eling of neural encoding could be more targeted and prior-based. This may extend the boundary
of controversial single-brain-area functional mapping restriction.

3.2 Brain-Wide Single-Neural Level Functional Network Study

It is widely recognized that different levels of clusters of neurons are recruited for diverse behav-
ior tasks.112 Even a simple perceptual input could arouse distributed neural activities across
the brain. Communication across multiple regions is crucial for the brain functioning as a
system.29,109,113 Observing the brain in vivowith behaving animals enables the inference of func-
tional circuits across brain areas, by analyzing statistical dependencies between neurons.

Restricted by the detection capability, conventional network inference either concentrated on
a local circuit or utilized low-spatial-resolution brain activities through functional magnetic
resonance imaging,113,114 electroencephalogram, or wide-field microscopy.29 Brain activities
acquired through these techniques characterize the area-averaged multi-unit neuron activity con-
taining multi-frequency oscillation components,115 thus are temporally smoother and more stable
across trials. Single-neuron activities, however, exhibited larger variance, sparsity, and random-
icity through trials.116 The commonly used spectrum methods on field potentials decompose
different frequency components and analyze the phase lag between brain areas to infer the infor-
mation flow through the precedence of brain areas. These methods became meaningless on sin-
gle-neuron traces because the frequency components lack interpretable physical meanings.
Metrics of similarity such as instantaneous phase, phase lag, and phase synchronization
index117 are no longer applicable. And the quadratic increase of the computational complexity
while calculating pair-wise similarity of the neurons also brings challenges to the network infer-
ence. All these barriers bring great difficulties and opportunities to interpret the working mech-
anisms of neural circuits at the single-neuron level with mesoscale neural imaging.

Despite the inefficiency of phase decomposition-based methods, the covariance or correla-
tion remains the most straightforward model-based metric which describes the undirected
similarity between two fluorescence signals. The similarity matrix represents the pairwise cor-
relation among the neural population. With the pairwise correlation which describes the sim-
ilarity of neurons, subsequent clustering118 methods could be used to assemble the neurons
into separated groups.119 Manually selected seed with Pearson correlation matrix has been used
to identify the functional circuits across the larval zebrafish brain60 [Fig. 4(c)]. There are plentiful
other unsupervised clustering methods available, such as k-means clustering, hierarchical clus-
tering, barcode analysis, and graph-based analysis. These methods have been used in different
experiments. The k-means clustering was used to find the representation structure at single-neu-
ron level in the rat orbitofrontal cortex.120 The k-means method remains computationally effi-
cient even with high dimensional data, but the result of k-means algorithms depends heavily on
the hyperparameter k, thus requiring pretest or the prior knowledge from the researcher. The
hierarchical algorithm was used to cluster the retinal ganglion cells and exhibited high interpret-
ability and visualization ability,121 However, it may encounter severe computational complexity
with higher-dimensional data. The barcode analysis required a character barcoding process
before categorizing. For instance, the neurons from the whole brain of the zebrafish were bar-
coded via their response to certain stimuli and clustered into 256 classes.86 What may be trouble-
some with barcoding is that the number of categories increases exponentially with the bit of
barcode in binary coding, which restricts its application scope.

Apart from the model-based clustering, functional cell assemblies could also be identified
through model-free decomposition analysis. Factorization methods are performed on the 3D
tensor stacked by multi-trial 2D neural activity maps, which includes PCA, demixed principal
component analysis (demixed PCA),122 and non-negative tensor factorization.123 These models
factorize the tensor into rank-1 components and extract the temporal and trial dimensional vector
as trial-consistent and within-trial latent variables of the neuron representation. Though
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unsupervised, these vectors may correspond to behavioral observations such as performance
accuracy and task engagement.

The temporal correlation-based network mentioned above often induces false-positive con-
nections between indirectly coupled neurons.112 A sparser binary adjacency matrix could be
derived by hard-threshold or k-nearest neighbors. On the other hand, Granger causality, or trans-
fer entropy analysis, is a temporal-precedency-based metric that reveals directed information
flow from one node to another. Its basic assumption is that the history of a precedent neuron
should be contributing to predicting the future of the downstream neuron. Granger causality has
been used to investigate the unbalanced distribution of information density in the somatosensory
cortex of the mouse.124 Additionally, there has been open-source algorithm toolboxes125 for per-
forming Granger causality analysis. The computational cost of Granger causality algorithm
increases quadratically with the number of nodes. Improved Granger causality algorithms126 are
developed to decrease computational costs and avoid overfitting. Transfer entropy also serves as
an equivalent for Granger causality under Gaussian variables127 with a much lower computa-
tional complexity. With the help of optogenetics,128 it is possible to perturbate in vivo neurons
and watch the network in dynamic. Modal-based Bayesian network was used to inference the
neural spike trains and connectivity with simultaneous optogenetic perturb and electrophysio-
logical recording.129

4 Looking Ahead

Mesoscale imaging with single-neuron level resolution has provided unprecedented potential for
understanding the mechanism of both local and long-range brain circuits. Ambitious computa-
tional scientists look forward to mimicking the brain functions and building general intelligent
machines. But there are still data analysis obstacles lying ahead of us, which would take long-
term efforts before we uncover the myths of the brain network.

The fast-growing of long-term high-speed mesoscale volumetric imaging craves high-
efficiency data analysis methods. The volume sequences captured by light-sheet microscopes,
light-field microscopes, or multifocal microscopes could easily make TB-level data sizes. For a
typical example, conventional matrix decomposition approaches are ineffectual for calcium
extraction from 3D volumes. SID104 was used to reconstruct 3D positions of neurons by first
deconvolving the pixel-wise SD image of background-subtracted images. The neuron candidate
positions were identified using a band-pass filter and back-projected to multiple views for spa-
tial-temporal footprint update. This has enabled the decomposition to take place in a lower
dimension, which saves vastly the computational cost. Further analysis considering the pairwise
correlation or causality between neurons also costs massive computing resources. Apart from the
task-relevant sorting procedure, which could massively reduce the analyzing subjects, dimen-
sionality reduction under sparsity prior118 could also help us with identifying hierarchical clus-
ters of neuron assemblies. Nevertheless, analyzing the populational property of neurons
increases the stability over trial and time-lapse, and surrenders the single-neuron level calcula-
tion mechanism, which should be a trade-off that requires careful consideration. Data-driven
deep-learning methods are very promising in many steps of the whole pipeline especially for
its low computational costs, since the mesoscale imaging data usually has very strong local sim-
ilarity across a large FOV. The whole pipeline should be considered simultaneously during the
design of the network framework, while the downstream analysis can also be used as the metric
to evaluate the performance of different algorithms. The generalization and practicality of current
deep neural networks need to be enhanced for its broad and convenient applications. In addition,
more and more mesoscale databases of different imaging modalities and diverse tasks are
required to promote this field and evaluate the rapidly emerging algorithms.

Another concern of single-neuron network study, as well as higher-level networks inference
of brains, is the network interpretability.130 There are researchers arguing the credibility of the
commonly used methods such as single-neuron lesion, correlation, and granger causality.131 The
analytic approaches were performed on a microprocessor whose algorithm flowchart was known
as prior. The research concluded pessimistically that current approaches may fall short of inter-
preting the algorithm of the neural system, regardless of the amount of data. It seems that
although we are desperate for acquiring more data, the basic tool of understanding the brain
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network is still absent. It was suggested by Marr132 that there are three levels of understanding a
system: functions, algorithms, and implementation. Although we have dissected several percep-
tual input pathways such as vision and audition, the basic communication protocol of neurons
remained unknown. To understand how the neurons in brain give rise to the ability of recog-
nition, we may need a network analysis technique that could find more fundamental arithmetic
units or their hierarchical structures of neural network.

In conclusion, we have introduced the general analysis pipeline of fluorescence mesoscale
brain images in this review. But there are still multiple challenges for existing methods to deal
with the complex network of the brain. Nevertheless, we believe that with the rapid growth of
imaging techniques, analyzing methods, and computational abilities, global circuits on the sin-
gle-neuron level will be more extensively explored in the future.
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