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Abstract. This review highlights recent and novel trends focused on metallic (plasmonic) and
dielectric metasurfaces in photoconductive terahertz (THz) devices. We demonstrate the great
potential of its applications in the field of THz science and technology, nevertheless indicating
some limitations and technological issues. From the state-of-the-art, the metasurfaces are, by far,
able to force out previous approaches like photonic crystals and are capable of significantly
increasing the performance of contemporary photoconductive devices operating at THz frequen-
cies. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOL 10.1117/1.0E.59.6
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1 Introduction

To date, the terahertz (THz) frequency range has found wide applications in many fields ranging
from condensed matter physics'™ and material science®® to gas sensing’ and pharmaceutical
industry'® as well as various security''™'® and biomedical'">? applications. All of these require
high-sensitive and broadband THz instruments, in particular, efficient operation in real time and
at room temperature.>>*

Among the variety of contemporary THz emitters and detectors, photoconductive antennas
(PCAs) have become the prevalent ones and currently are widely used as key elements in pulse
and continuous-wave (CW) THz spectroscopic and imaging systems due to their reliability, cost
effectiveness, relative ease of fabrication, and flexibility in design. Being used with femtosecond
lasers, the PCAs exhibit a broad spectrum of up to 4.5 THz with a high dynamic range even
exceeding 100 dB at room temperature. Nevertheless, PCAs’ efficiency is limited by the amount
of the energy of an absorbed optical radiation, relatively low mobility of photocarriers in photo-
conductive substrates, >’ screening effects,”®* and a semiconductor breakdown threshold
voltage.***! The increase in the PCA performance is predominantly associated with an efficient
optical light confinement in the antenna’s gap that can be reached due to metasurface imple-
mentation. The latter allows the manipulation of phase, amplitude, and polarization of an inci-
dent radiation with high spatial resolution. To date, two kinds of metasurfaces based on various
principles are commonly used in PCA technology: metallic and dielectric metasurfaces.

The earlier works on metallic metasurfaces with different shapes and orientations have
demonstrated resonant scattering of light by oscillating free electrons at the surface, which
occurs due to a resonant electronic—electromagnetic oscillation providing high electromagnetic
field enhancement.’” In general, metallic (or plasmonic) metasurfaces exhibit better device
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performance yet suffer from high dissipation (ohmic) losses, making the on-chip power scaling
with number of devices extremely inefficient.*’

This drawback can be circumvented using dielectric metasurfaces, which consist of interfaces
patterned with a distribution of high-index dielectric light scattering particles of size
comparable® or shorter’*’ than the wavelength of light. A fundamental difference from the
traditional field enhancement seen in plasmonic metasurfaces is the achievement of not only
electric field hotspots but also nanoscale magnetic hotspots exploiting magnetic Mie resonances
and light enhancement by particle surface nanostructures.*® Another unique aspect of dielectric
metasurfaces lies in the great variety of possibilities for engineering the anisotropy of the media
providing a light confinement without using metallic components. In general, dielectric meta-
surfaces can alter the wavefront of incident light for applications such as flat lenses,***’ polar-
izers, and beam shaping.*'*> Their dielectric nature ensures higher transmission and diffraction
efficiencies compared with plasmonic metasurfaces.

In addition, it should be noted that sufficiently small spherical dielectric nanoparticles pro-
vide pronounced resonances associated with the excitation of both magnetic and electric dipolar
modes compared with plasmonic structures. Moreover, magnetic dipole modes also occur in
dielectric particles with nonspherical geometries. In rectangular resonators, for example, the
resonant wavelength can easily be tuned by changing either the geometry or the size of the
scatterer.*

In this review, we briefly summarize some of the recent approaches aimed at the enhance-
ment of optical-to-THz conversion efficiency in PCAs by implementation of various metallic and
dielectric metasurfaces in the antenna’s photoconductive gap. The paper is organized as follows.
In Sec. 2, we consider the PCAs with metallic nanostructures featuring different geometries for
generation and detection of THz waves. We concentrate on various approaches that utilize two-
dimensional and three-dimensional plasmonic gratings and are aimed at the field enhancement.
In Sec. 3, we focus on the dielectric nanostructures and highlight some recent PCA designs with
new antireflection and protection coating layers as well as all-dielectric metasurfaces.

2 Metallic Metasurfaces

The implementation of metallic (plasmonic) structures into a PCA’s gap leads to an increase of a
photocarrier generation in a photoconductive layer, which results in an increased THz emission
due to local field enhancement. This enhancement occurs due to surface plasmon waves* so that
the field enhancement near the electrodes becomes much greater than the electric field of the
incident wave.*>*

The idea to use plasmonic metasurface to manipulate the optical wave and to increase the
efficiency of PCA started with the discovery of extraordinary optical transmission through sub-
wavelength nanostructured arrays.*’ The authors found the unusual optical properties that are
related to the coupling of an optical light with plasmons (or electronic excitations) on the surface
of the periodically patterned metallic film. Later in Ref. 48, it was shown that by changing the
nanostructured array elements, namely the refractive index of the adjacent medium and the angle
of incidence, it is possible to handle optical transmission through metallic film. In this way, one
can specifically design the topology of metallic structure to allow an extraordinary transmission
through the spacing between ridges with a specific height of grating to thus increase the trans-
mission of an optical excitation within a photoconductive layer. Later, Martin-Moreno et al.*’
and Shen et al.”® carried out an analytical calculation of nanostructured configuration featuring
an artificial refractive index by exploiting the subwavelength propagating modes in metallic
systems. This gave rise to the possibility of calculating nanostructured configuration for the
required wavelength of an optical pump excitation. Further, the theory of electromagnetic waves
interaction with periodic arrays of subwavelength metallic slits has further been developed so
that the grating exhibits an extraordinary electromagnetic transmission at optical and THz
frequencies simultaneously.’!-?

The aforementioned theory gave rise to an implementation of metallic metasurface featuring
a 2-D grid, the so-called 2-D plasmonic grating [see Fig. 1(a)], which resulted in a strong local
field enhancement in the PCA’s gap.>*° The efficiency of this 2-D grating strongly depends on
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Fig. 1 (a) Optical microscopic image of the log-spiral PCA integrated with plasmonic contact elec-
trodes and a magnified scanning electron microscopic (SEM) image of plasmonic grating (repro-
duced from Ref. 63, with the permission of AIP Publishing). (b) Optical transmission spectrum
through the plasmonic grating. The inset denotes an optical absorption inside the photoconductive
substrate at a vertical cross section at 800 nm pump wavelength [adapted from Ref. 65, with the
permission of Springer Nature under a Creative Commons Attribution (CC BY) license].

the polarization of incident radiation, whereas the grating was initially designed to excite surface
plasmon waves along the grating when being pumped with a TM-polarized optical wave. The
latter allows the transmission of a large portion of an optical light through the nanoscale grating
into a photoconductive substrate [Fig. 1(b)]. In addition, using the PCA featuring nanoscale
plasmonic electrodes, one can significantly reduce the average path of photocarriers toward
antenna electrodes and hence increase an optical-to-THz conversion. Later, Berry et al.>® pro-
posed the design of the PCA with plasmonic grating, which is widely used until now.

The grating comprised Ti/Au metallization featuring 200-nm pitch, 100-nm spacing, and
50-nm total height. The plasmonic PCA utilized a low-temperature grown (LT-GaAs) photo-
conductive layer with a 150-nm SiO, antireflection coating. The authors demonstrated a 50-fold
enhancement in the emitted THz power and a 30-fold increase in the PCA-detector sensitivity
compared with the conventional PCA without gratings. In addition, we note that a 2-D plasmonic
grating can also be used in the PCAs in unbiased modes.’’>

The further improvement of the grating design was proposed in Refs. 60 and 61 by means of
etching LT-GaAs in the way that high-aspect ratio gratings can be formed and their sidewalls
then can be covered with metal (see Fig. 2). These so-called 3-D plasmonic electrodes featuring
400 nm height of LT-GaAs determine the excited modes inside the subwavelength slab wave-
guides formed by the gratings; thus higher order TEM guided modes can be excited with an
optical pump excitation.’® The authors obtained 105 4W of the emitted THz power within the
0.1- to 2.0-THz frequency bandwidth with response to 1.4 mW of an optical pump that resulted
in a record-high optical-to-THz conversion of 7.5%. Nevertheless, it should be noted that 3-D
plasmonic gratings require tough technological facilities and thus are difficult to fabricate.
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Fig. 2 (a) Schematic of the 3-D plasmonic grating and (b) its SEM image (adapted from Ref. 60,
with the permission of OSA Publishing).
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Alternatively to Ref. 61, Lavrukhin et al.®* studied the PCA with optimized plasmonic grating
geometry. The PCA features log-spiral Au-electrodes deposited on a SI-GaAs photoconductive
substrate. The optimization was made by means of numerical simulations. The grating period
was equal to 200 nm with nanoridge thickness of 100 nm, whereas plasmonic grating height was
100 nm. A 230-nm Si3N, passivation under the antenna’s metallization was used to reduce leak-
age currents through the PCA, whereas a 180-thick Al,O5 antireflection and protection coating
layer was deposited on top of the structure. The given design of the plasmonic PCA provided
a dynamic range exceeding 70 dB along with spectral bandwidth of 4 THz and a 3000-fold
enhancement in the emitted THz power in the low-frequency region. We note that these spectral
parameters were achieved in the operation with low optical pulses featuring an average pump
power <1 mW.

The another approach is associated with the plasmonic nanoantenna arrays and can be used
for generation®** and detection® of the THz waves. The array of the plasmonic PCAs is able to
significantly increase the emitted THz power by reducing thermal breakdown® and photocarrier
screening®® even at high energies of an optical pump. Berry et al.®® utilized the 3 x 3 array of
microlens, which splits and focuses the optical pump beam onto the active area of each plas-
monic PCA-emitter [see Fig. 3(a)] fabricated on LT-GaAs. It was stated to reach a very high
emitted THz power of up to 1.9 mW in the 0.1- to 2-THz frequency range corresponding to an
optical pump power of 320 mW.

Later in Ref. 64, a large-area PCA-emitter featuring an 0.5 x 0.5 mm? active area based on a
2-D array of plasmonic nanoantennas was proposed. The emitter utilizes an ErAs:InGaAs photo-
conductive substrate featuring very high-resistivity and ultrashort photocarrier lifetime. The
array is connected to anode bias lines within every other gap between the anode and cathode
bias lines. The other gaps between the anode and cathode bias lines are shadowed by a second
metal layer deposited on top of a Si;N, antireflection coating layer. This blocks optical trans-
mission into the photoconductive layer and prevents the formation of an optically induced
radiating dipole moment in the opposite direction to that of the 2-D nanoantennas.”*® The

Optical pump

Microlens
array

(a) (b)
Fig. 3 (a) The 2-D array of plasmonic PCAs (reproduced from Ref. 63, with the permission of AIP

Publishing). (b) The PCA featuring a 3-D plasmonic nanocavity with DBR (adapted from Ref. 1,
with the permission of Springer Nature).

Optical Engineering 061608-4 June 2020 « Vol. 59(6)



Yachmenev et al.: Metallic and dielectric metasurfaces in photoconductive terahertz devices: a review

observed THz power exceeded 300 uW over the 0.1- to 5-THz frequency range. Yardimci and
Jarrahi® used the similar plasmonic array topology and LT-GaAs as a photoconductive layer to
extend their approach on a PCA-detector. With an implementation of a 4-um length nanoantenna
with a tip-to-tip gap size of 500 nm, one can reached a high signal-to-noise ratio (SNR) of
107 dB when operating with an optical pump power of 170 mW.

The recent progress in PCA fabrication is attributed to the plasmonic nanocavity, which indu-
ces a 3-D confinement of an optical pump pulse between a distributed Bragg reflector (DBR) at
the bottom and the plasmonic nanoantenna on the top of the photoconductive layer [see Fig. 3(b),
adapted from Ref. 69]. In this case, the photocarriers are generated in very close proximity to the
nanoantennas, and if a bias voltage is simultaneously applied, almost all of them can reach the
nanoantennas and contribute to the THz emission. Yardimci et al.*” proposed a PCA-emitter
consisting of a 2-D array of the plasmonic nanoantennas fabricated on a high-mobility 190-nm-
thick GaAs photoconductive layer with a DBR. The latter comprises 25 alternating pairs of
60-nm-thick AlAs and 55-nm-thick Aly33Gayg;As layers. The fabricated PCA generates
4 mW of the THz power over the 0.1- to 4-THz frequency range with respect to an optical pump
power of 720 mW. Later, Yardimci et al. used this PCA configuration combined with a 170-nm
thick GaAs photoconductive layer (the similar as in Ref. 69) as a PCA-detector.”’ They dem-
onstrated an SNR of 100 dB when operating with an optical pump power of 5 mW. However,
as an optical power exceeds 5 mW, the sensitivity of the detector starts saturating, whereas the
LT-GaAs-based PCA-detector exhibits higher responsivities working with the same optical
pump. Thus despite the great responsivity at low pump powers of up to 5 mW, the higher optical
pump levels require shortening of the photocarrier lifetimes and the LT-GaAs becomes a more
preferable photoconductor for the plasmonic PCA-detectors.

Recently, a very promising design of the plasmonic gratings has been theoretically proposed
by Khorshidi et al.”! They proposed modifying the plasmonic PCA with a periodic metallic
grating structure by means of the three-stepped rods buried in the photoconductive layer [see
Fig. 4(a)]. In accordance with the analytical results,’' an implementation of the new grating
featuring the same parameters as in Ref. 56 with the exception of the rods dimensions lead
to an increase of the transmitted power of 800 nm optical excitation into the photoconductive
layer from 35% to ~100% compared with the plasmonic PCA with rectangular rods. As a result,
the generated THz photocurrent and the emitted THz power of the plasmonic PCA were
increased up to 82% and 226%, respectively, using the buried three-stepped rods. Nevertheless,
it should be noted that the practical use of the buried rods grating might be limited due to
fabrication issues.

In addition, a 2-D plasmonic array with special topology can be used in an optical polari-
zation-insensitive THz emitter. Li et al.”? proposed an array of nanoscale cross-shaped apertures
as the plasmonic contact electrodes [Fig. 4(b)]. The log-spiral antenna was deposited on a surface
of the SI-GaAs photoconductive substrate. The cross-shaped plasmonic contact electrodes of
antenna have a 20 x 20 ym? area covered with a 340 nm Si;N, antireflection coating layer.
The authors found a negligible variation in the emitted THz power, which is observed when

Optical pump

Air
- Photoconductive material
Metal

\ Terahertz |
radiation
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Fig. 4 (a) Schematics of the three-stepped rods buried in a photoconductive layer (adapted from
Ref. 70 with the permission of OSA Publishing). (b) The array of nanoscale cross-shaped aper-
tures with its dimensions for polarization-insensitive THz emitter [reproduced from Ref. 1, with the
permission of AIP Publishing under a Creative Commons Attribution (CC BY) license].
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the angle of an optical polarization varies from 0 deg to 180 deg. The emitter demonstrates the
THz power of 28.4 uW at an optical pump power of 8 mW and a bias voltage of 20 V. Note that
the THz power is comparable to that from Ref. 63 where the plasmonic PCA was pumped with
the TM-polarized optical excitation.

It should be noted that the plasmonic effects found their application in photomixers used for
CW generation and detection of the THz waves. In general, THz photomixers commonly utilize
interdigitated electrodes, which allows for effectively increasing both the length of the metal—
semiconductor interface and the active area for the THz generation.””””” Recently, using the
modified photomixer electrodes featuring a tip-to-tip topology that provides strong THz field
enhancement with good impedance matching to antenna and exhibits a lower RC time constant
allowing the enhancement of the THz intensity in the high-frequency region of the THz spectrum
was proposed.’®”® Meanwhile, the tip-to-tip topology implies that the subwavelength electrode
gaps to employ plasmonic effects to increase the electric field in close proximity to the electro-
des. Seniutinasa et al.* proposed a photomixer in conjunction with a 800-nm laser comprising a
meander-shape antenna and the sub-100-nm Au nanoelectrodes deposited on the LT-GaAs pho-
toconductive substrate that demonstrated a few hundreds of nW at around 0.15 THz and around
one order lower of nW in the 0.3- to 0.4-THz frequency range when operating with a bias voltage
of 20 V and an optical pump power of 50 mW. Later in Ref. 81, a high-power photomixer in
conjunction with a 1550-nm fiber laser featuring the log-spiral antenna combined with plas-
monic gratings was proposed. The design of the gratings was the same as in Ref. 56 while each
contact electrode had a 15 x 15 ym? area covered with a 250-nm-thick Si;N, antireflection coat-
ing layer. The photomixer demonstrated up to 0.8-mW radiation power at 1 THz within every
duty cycle at an optical pump power of 150 mW and a modulation frequency of 1 MHz. The
same plasmonic structure was used for the heterodyne THz detector exhibiting a broadband THz
detection over the 0.1- to 0.55-THz frequency range.®

Recently, the specifically designed interdigitated plasmonic grating was used for the THz
detection.®® The detector utilized a quasi-1-D structure featuring the undoped InGaAs photo-
conductive channel combined with the interdigitated nanoelectrodes that were installed every
200 nm on the mesa structure to manipulate the local ultrafast photocarrier dynamics via a care-
fully designed field-enhancement and plasmon effects (see Fig. 5). For comparison, the authors
fabricated a reference photomixer based on 100 pairs of LT-InGaAs/InAlAs multilayers grown
on a Fe-doped InP substrate. The length and the width of the fingers of the reference photomixer
were equal to 8 and 1 um, respectively, with a separation of 2.2 ym. The 10-mW optical beating
signal was focused on the photoconductive regions of the photomixers. It was shown that the
novel photomixer can detect CW THz radiation of up to 2 THz, which is ~10 times better than
the reference photomixer.

Another promising approach implies the hybrid PCA featuring an array of metallic nano-
islands or nanoantennas. To date, different kinds of hybrid PCAs have been proposed and studied
both theoretically and experimentally, including rectangular®* and hexagonal®' nanoantennas,

Fig. 5 SEM image of nanoplasmonic InGaAs photomixer (reproduced from Ref. 81, with the
permission of AIP Publishing).
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Fig. 6 SEM images of the PCA with Ag nanoislands in the photoconductive gap (adapted from
Ref. 45, with the permission of Springer Nature).

Au nanodisk array,* and the PCAs featuring single- and double-layer topology of nanoantennas
with different types and sizes.**® We briefly summarize the most recent achievements.

One of the pioneer papers was dedicated to the incorporation of Ag nanoislands into the PCA
gap by means of thermal dewetting of a thin metal film at relatively low temperature.®® For a
20-nm-thick Ag film, the average diameter of Ag nanoislands amounts to ~173 nm. The fab-
ricated PCA showed two times higher enhancement in the emitted THz power compared with the
PCA without nanoislands. Later, this idea was evolved in Ref. 45, where Lepeshov et al. found
the optimized size of the Ag nanoislands via numerical simulations. Typical SEM images of the
PCA with Ag nanoislands are depicted in Fig. 6.

The size and the shape of the nanoislands were chosen to provide maximum absorption of an
optical excitation at 800 nm. The hybrid PCAs utilized self-assembled InAs quantum dots
embedded into a GaAs matrix, which are used to reduce photocarrier lifetimes.”®®! The fabri-
cated PCA demonstrates over a fivefold increase in the generated THz signal at around 1 THz
and over a twofold increase in the overall THz power compared with the reference PCA.

A significant increase in the optical-to-THz conversion has been recently observed in the
plasmonic metasurface comprising a Au nanodisks array.”> The authors used the nanodisks
height and diameter and the array’s periodicity equal to 120, 230, and 420 nm, respectively;
then the nanodisks were covered with Ti/Au metallization and 200 nm Si; N, antireflection and
passivation layer [see Fig. 7(a)]. As a result, the registered THz electric field was 5.6 times higher
in the 0.1- to 2.5-THz frequency range compared with the reference PCA without the
metasurface.

An interesting idea featuring the plasmonic metasurface was recently realized in Ref. 93. The
H-shape THz emitter with the bowtie gap area was deposited on the top side of a 625-um-thick
photoconductive GaAs emitter. The metasurface constitutes the T-shaped resonators on the back-
side of the emitter. The metasurface lies below the Fraunhofer distance with respect to the exci-
tation source and thus is excited in a quasi-near-field zone. Therefore, an extraordinary broad
transmission enhancement at around 0.47 THz and another extremely narrow enhancement at
0.92 THz in the THz emission spectrum can be observed owing to the quasi-near-field excitation.
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Fig. 7 (a) SEM image of the PCA with Au nanodisk array. (b) THz radiation power spectra
comparison for plasmonic and conventional PCAs (adapted from Ref. 90, with permission from
SPIE).
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Note that the second enhancement at 0.92 THz is twice as high as that of the PCA without
metasurface.

The one promising approach seems to be transparent-conducting oxides (TCOs) that can be
used as a metasurface material for the PCAs due to smaller losses compared with noble metals.”*°
Gric et al.*® studied the absorption of a laser pulse in the PCAs with silver- and TCO-based
nanocylinders inserted into GaAs volume and demonstrated that the TCO-based metasurface pro-
vides a fivefold absorption enhancement compared with the silver-based metasurface thus leading
to a 25-fold increase in the emitted THz power.

3 Dielectric Metasurfaces

Alternatively to the plasmonic metasurfaces, the dielectric metasurfaces have attracted a signifi-
cant interest in recent years because they can efficiently neutralize the drawbacks of plasmonic
structures.

As is known, plasmonic metasurfaces suffer from low transmission efficiency due to reflec-
tions and absorption.”” Despite dielectric structures provide lower field enhancement compared
with plasmonic structures, their significant advantage is the lack of dissipation. Furthermore, the
electric field hotspot can be controlled to lie either inside or outside the resonator in the near-field
environment.”® In addition, the predominantly electric dipole nature of plasmonic resonances
makes it difficult to achieve any enhancement of the magnetic field.”’

This fundamental challenge can be overcome using dielectric metasurfaces made of high-
index nanoparticles. When light with frequency below or near the bandgap frequency of the
material hits a high-index nanosphere, both the magnetic and electric dipole resonances are
excited, making the particle behave like a magnetic dipole (first Mie resonance) and an electric
dipole (second Mie resonance).**!*’ In addition, along with enhanced spectral control, dielectric
metasurfaces can affect the polarization and spatial profile of beams.'®! Figure 8 illustrates
schematics of the electric field distributions in plasmonic and dielectric structures.

The implementation of either dielectric particles or structures into the PCA’s gap has become
one of the intensively growing trends that efficiently work for both photoconductive THz emitter
and detector. For instance, it has been demonstrated that silicon-based flat meta-lens directly
mounted on the backside of the PCA can efficiently collimate THz waves compared with a
conventional hyper-hemispherical lens due to reduced thickness and lightness offering an ease
of fabrication.'?? Recently, a meta-lens featuring the dielectric metasurface with a subwavelength
unit size of 0.391 was proposed, demonstrating its competitive application in the THz imaging
and focusing.'®

In general, thin dielectric films are used in the PCAs predominantly as antireflection coating
layers, reducing the Fresnel losses and thereby increasing the absorption of an optical excitation
by a photoconductive substrate. The most commonly used materials have become SiO,,%*¢!
Si;N,,'* and Al,O;. Recently, a highly electrical resistive TiO, was proposed as an antireflec-
tion coating in contrast to the above-mentioned materials.'” The schematic view and an SEM
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Fig. 8 Schematics of the electric field distributions in plasmonic and dielectric structures (adapted

from Ref. 32 with the permission of OSA Publishing).
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Fig.9 (a) Schematic view of the proposed PCA with TiO, layer with its SEM image and (b) spectra
of THz pulses emitted for TiO, coated and uncoated PCAs (from Ref. 103, with the permission
of AIP Publishing).

image of the proposed PCA with a TiO, layer with its spectral characteristics are depicted in
Fig. 9. The authors demonstrated that a 80-nm TiO, layer embedded into the PCA gap efficiently
suppresses the reflection from the SI-GaAs (~6.9%), resulting in an enhancement of optical-to-
THz conversion.

Further improvement of the PCA performance was proposed by Bashirpour et al.,'% where
they implemented an optical nanoantenna comprised of an array of dielectric ZnO nanorods to
boost the local field and the optical absorption. This resulted in a twofold increase in the THz
photocurrent and a fourfold enhancement in the emitted THz power compared with the conven-
tional PCA without nanoantenna. Furthermore, ZnO nanorods act as a virtual layer with a spa-
tially varying refractive index between air, an antireflection coating layer, and a photoconductive
substrate to minimize the reflection. The schematic diagram of the proposed PCA and the SEM
image of ZnO nanorods are depicted in Fig. 10.

In addition, it was recently stressed that the antireflection surface can be fabricated using
a femtosecond laser direct writing.'”” The authors demonstrated a great suppression of a specular
reflection on a sapphire with an inverted pyramid and cone arrays with a pitch of 2 ym and a total
height ~900 nm.

Recently, the new-design PCA featuring a defective photonic crystal (DPC) substrate, which
consists of a 2-D hexagonal lattice of air holes drilled into the thick underlying substrate, was
proposed.'® The hexagonal lattice has a defect core region, like a solid core photonic crystal
waveguide, which overlaps with the excitation gap of the PCA. The authors with this proposal
aimed to reduce the leaky modes (also known as substrate surface modes) and Fabry—Perot effect
through a decrease in the effective dielectric constant of the substrate using the DPC. Another
advantage of the DPC substrate is the enhanced directivity of the antenna because the radiation
spreads mainly along the defect axis.

Rahmati and Ahmadi-Boroujeni'” extended their proposal by designing two different PCA
arrays based on the DPC substrate. Using 1 X 2 arrays of bow-tie and four-leaf-clover-shaped
PCAs, the improvement of directivity in a broad band and the enhancement of the photomixer
antenna impedance at a resonant frequency have been demonstrated.

(@)

Fig. 10 (a) Schematic diagram of the proposed PCA and (b) the SEM image demonstrating
ZnO nanorods (adapted from Ref. 104 with the permission of Springer Nature).
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It should be emphasized that the first theoretical studies showcasing the impact of the dielec-
tric metasurface comprised of the periodic dielectric strips embedded into the PCA’s gap on the
antenna performance were presented by Khorshidi and Dadashzadeh.!'” They used the devel-
oped model for the calculation of the generated THz photocurrent and the emitted THz power''!
as well as the equivalent circuit model.''? The results demonstrate that the dielectric structure
featuring strips transmits about 73% of the TE-polarized wave power, corresponding to a 800-nm
fs-laser excitation, which is 7% higher compared with the power transmitted through the dielec-
tric structure without any strips. Moreover, the power of the TM-polarized wave transmitted
through the dielectric structure with the periodic strips is about 90%, which is 32% higher than
the power transmitted through the dielectric structure without strips. All of these resulted in a
70% and 20% increase in the emitted THz power compared with the PCA featuring no strips.
In addition, the dielectric strips allow for transferring more heat from the semiconductor to
the air, thus reducing the parasitic drop off in the photocarrier lifetime and the frequency
bandwidth.'' >

In a continuation of Ref. 110, Kazemi et a numerically demonstrated the improvement of
the transmission for both TE- and TM-polarized waves by the additional incorporation of mixed
graphene electrodes, which resulted in the increase of the detected THz signal. With the pro-
posed design, the transmission through periodic dielectric slits became more than 96% and
98.65% for TE and TM polarizations, respectively. It should be noted that graphene might
be attractive for the PCA''® due to higher impedance compared with gold and copper that allows
for satisfying an impedance-matching condition.!'” The latter provides an increase in both
detected and emitted THz signals. It was shown that a 10-nm graphene layer placed below
a 5-um thick copper together with nanoslits allows for increasing the detected THz signal peak
amplitude up to 14%.

Interestingly, that graphene can be used in the PCA-detectors to tune the THz absorbance.
One of the possible solutions is the so-called graphene-uneven dielectric layered structure that
provides either narrowband or broadband tunable absorption for both polarizations over a wide
THz frequency band.''® Finally, it was shown that the relative bandwidth of over 90% absorption
can reach about 65% in the THz range using the nonstructured graphene loaded with geomet-
rically gradient dielectric structures.''”

The recent tendencies in the PCA technology aim at introduction of all-dielectric metasur-
faces consisting of nanoscale Mie resonators, providing full absorption of an optical light within
the selected wavelengths.'?"123

The first PCA-detector utilizing all-dielectric metasurface was proposed by Mitrofanov
et al.'** The 20 x 20 um? patched metasurface comprises an array of nanobeams etched on the
surface of 160-nm-thick LT-GaAs featuring the period of 280 nm and the height of nanobeams

1115

Fig. 11 SEM image illustrating the perfectly absorbing photoconductive metasurface comprising
a network of resonators with broken symmetry and integrated into a THz detector [adapted with
permission from Ref. 123. Copyright (2019) American Chemical Society].
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equal to 70 nm. It was designed to support a confined mode and to optimize absorption of the
optical excitation. The fabricated detector exhibits a 15-fold enhancement in the registered
photocurrent compared with the reference one.

Recently, the aforementioned PCA-detector was further improved using a network of
electrically connected GaAs resonators, which form the perfectly absorbing photoconductive
metasurface.'? The perfect absorption was achieved via cubic Mie resonators featuring the bro-
ken symmetry without any metal elements. The authors first numerically demonstrated that both
odd and even magnetic dipole modes can be excited simultaneously with the metasurface com-
pared with the rectangular (symmetric) resonator. However, the perfect absorption (98% of the
incident light with a wavelength of 799 nm) is possible only for y-polarized light. The exper-
imental results exhibited significant on/off switching contrast (>107), very high dark resistance
(~50 GQ), and better SNR compared with the photoconductive PCA-detector featuring no meta-
surface. The SEM image of the fabricated detector is shown in Fig. 11.

4 Conclusions

In this review, we briefly summarized recent and novel trends focused on metallic and dielectric
metasurfaces in photoconductive THz emitters and detectors. We showcased the great potential
of their application in the field of THz devices, nevertheless demonstrating limitations and tech-
nological issues. From the state-of-the-art, the metasurfaces are, by far, able to force out some
previous approaches like photonic crystals and are capable of significantly increasing the per-
formance of the contemporary photoconductive THz devices.

From comparison between metallic and dielectric metasurfaces, one can conclude that both
of them demonstrate high efficiency. Nevertheless, the dielectric metasurfaces are of potential
interest since they are free from dissipative ohmic losses and provide a large diversity of dielec-
tric compounds. Moreover, the dielectric metasurface can be fabricated using a photoconductive
substrate itself.'**

In addition, we should highlight some new promising materials for the metasurfaces that are
TCO. Among them are tin-doped indium oxides, gallium-doped zinc oxides, aluminum-doped
zinc oxides, and others. The TCO-based plasmonic structures offer smaller ohmic losses com-
pared with noble metals.”*® Nevertheless, to date, no experimental samples of the PCAs
featuring plasmonic TCO-based nanoantennas have been fabricated.

It is also important to note that there are many other applications of the above-mentioned
metasurfaces that lie beyond the scope of this review and that are not limited by PCAs.!'?
For instance, metasurfaces can be configured for a variety of forms of light manipulation, includ-
ing holograms,'?’ polarization,'”® bending and focusing,'*!** and invisible cloaks.'?"13?
Concerning THz emission, different designs of the metallic metasurfaces can be used as a stand-
alone THz emitter with no antenna metallization.'*>~13® In this case, the THz generation occurs
due to nonlinear optical processes'** as well as the heat redistribution inside metal due to electron
heating by an optical excitation.'*”!*® However, the emitted THz power of the standalone metal
metasurface is relatively low compared with the plasmonic PCA® and even to the surface photo-
Dember THz emitter'*® and amounts, on average, to 0.15 mW, corresponding to an optical-to-
THz conversion efficiency of up to 0.01% at 5.8 THz."** Furthermore, both metallic and dielec-
tric metasurface configurations can be designed to effectively interact with THz radiation and
thus can be used in ultrasensitive THz sensors, THz absorbers, highly selective THz detectors,
tunable THz field modulators,>*~'*> and THz mirrors,'** as well as to control a wavefront at THz

frequency,'* etc.
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