A modified phase generated carrier (PGC) demodulation algorithm for interferometric sensor is presented in this letter. Compared with the differential-cross-multiplying measure (PGC-DCM algorithm), the effect of light intensity disturbance (LID) is eliminated. Additionally, the harmonic distortion of arctangent measure (PGC-arctan algorithm) is well suppressed. In the experiment, while the simulated LID frequency is settled to 50 Hz, the signal-to-noise of the improved PGC algorithm respectively receives an increase of 10.3 dB and 18.2 dB over PGC-DCM and PGC-Arctan algorithms. The system has a dynamic range of 45.9 dB at 600 Hz by employing the improved PGC demodulation algorithm.
The phase-shifted sensitivity of an interferometer can be enhanced by increasing the group index. In this paper, we experimentally demonstrate a slow light sensor by placing an active fiber Bragg grating (FBG) in one arm of the Michelson’s interferometer. A 25 KHz AC voltage was applied to a piezoelectric (PZT) set nearby the active FBG. Once the wavelength is varied to near the FBG band edge, the maximum phase-shifted amplitude appears, which is about 1.8 rad and is 4 times greater than that when wavelength is near the center of the reflection band. The active FBG is pumped by a 980 nm laser diode, which can help us to stabilize the system works in the slow light regime to obtain the maximum phase shift. It provides a very simple approach to increase the phase-shifted sensitivity, which is likely to have important applications for strain and acoustic sensors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.