A spectrometer that can capture two orthogonal polarization components of s light beam is demanded for polarization sensitive imaging system. Here, we describe the design and implementation of a high speed spectrometer for simultaneous capturing of two orthogonal polarization components, i.e. vertical and horizontal components, of light beam. The design consists of a polarization beam splitter, two polarization-maintain optical fibers, two collimators, a single line-scan camera, a focusing lens, and a reflection blaze grating. The alignment of two beam paths was designed to be symmetrically incident on the blaze side and reverse blaze side of reflection grating, respectively. The two diffracted beams were passed through the same focusing lens and focused on the single line-scan sensors of a CMOS camera. The two spectra of orthogonal polarization were imaged on 1000 pixels per spectrum. With the proposed setup, the amplitude and shape of the two detected spectra can be controlled by rotating the collimators. The technique for optical alignment of spectrometer will be presented and discussed. The two orthogonal polarization spectra can be simultaneously captured at a speed of 70,000 spectra per second. The high speed dual spectrometer can simultaneously detected two orthogonal polarizations, which is an important component for the development of polarization-sensitive optical coherence tomography. The performance of the spectrometer have been measured and analyzed.
Fourier transform spectroscopy (FTS) is a type of spectroscopy that can be used to analyze components in the sample. The basic setup that is commonly used in this technique is “Michelson interferometer”. The interference signal obtained from interferometer can be Fourier transformed into the spectral pattern of the illuminating light source. To experimentally study the concept of the Fourier transform spectroscopy, the project started by setup the Michelson interferometer in the laboratory. The implemented system used a broadband light source in near infrared region (0.81-0.89 μm) and controlled the movable mirror by using computer controlled motorized translation stage. In the early study, there is no sample the interference path. Therefore, the theoretical spectral results after the Fourier transformation of the captured interferogram must be the spectral shape of the light source. One main challenge of the FTS is to retrieve the correct phase information of the inferferogram that relates with the correct spectral shape of the light source. One main source of the phase distortion in FTS that we observed from our system is the non-linear movement of the movable reference mirror of the Michelson interferometer. Therefore, to improve the result, we coupled a monochromatic light source to the implemented interferometer. We simultaneously measured the interferograms of the monochromatic and broadband light sources. The interferogram of the monochromatic light source was used to correct the phase of the interferogram of the broadband light source. The result shows significant improvement in the computed spectral shape.
In this work, the system implementation and characterization of a Phase-Resolved Doppler Optical Coherence Tomography (PR-DOCT) is presented. The phase-resolved Doppler technique was implemented on a custom built Frequency Domain OCT (FD-OCT) that was recently developed at Suranaree University of Technology. Utilizing Doppler phase changed relation in a complex interference signal caused by moving samples, PR-DOCT can produce visualization and characterization of flow activity such as blood flow in biological samples. Here we report the performance of the implemented PR-DOCT system in term of the Velocity Dynamic Range (VDR), which is defined by the range from the minimum to the maximum detectable axial velocity. The minimum detectable velocity was quantified from a histogram distribution of phase difference between consecutive depth-scan signals when performing Doppler imaging of a stationary mirror. By applying a Gaussian curve fitting to the histogram, the Full Width at Half Maximum (FWHM) of the fitted curve was measured to represent the detectable minimum flow velocity of the system. The maximum detectable velocity was limited by the phase wrapping of the Doppler signal, which is governed by the acquisition speed of the system. We demonstrate the 3D Doppler imaging and velocity measurement of feed flow phantom using 100% milk pumped through a microfluidic chip by using a syringe pump system.
We report the implementation of a high speed and high resolution spectrometer-based spectral domain optical coherence tomography (SD-OCT) system. A high speed near-infrared spectrometer was designed and built, utilizing a high speed line-array CMOS detector and all off-the-shelf optical components. The acquisition speed of more than 100,000 spectra per second was achieved, enabling a high speed 3D imaging of the implemented SD-OCT system. Here, we report the performance characterization, i.e. resolution, imaging depth, and sensitivity of the implemented system. The penetration depth and depth resolution of the system are currently 2 mm and 14.1 μm, respectively. The lateral resolution of the system was quantified by the Modulation transfer function (MTF) measurement to be about 15.5 μm. over the lateral field-of-view (x-y axes) of 30 mm × 30 mm. The acquisition speed of the system was 20 frames per second.
In this work, we report simple optical design of a high speed and high spectral resolution spectrometer based on the first order calculation. The spectrometer was design and optimized for high speed detection of spectral interference signal to be used as a detection unit of our developed Frequency Domain Optical Coherence Tomography (FD-OCT). We then detailed the hardware implementation of both the spectrometer and the FD-OCT system in our laboratory at Suranaree University of Technology, Thailand, by utilizing only off-the-shelf optical components. The spectrometer is capable of capturing of the spectral interference fringes at up to the camera limit of 130,000 spectra per second, enabling cross-sectional microscopic imaging of biological sample of more than 100 frames per second (for a 1000 depth scans per frame). In addition, we reported several simple yet robust techniques for characterization of the system performance in the context of FD-OCT 3D imaging, such as an effective lateral resolution, depth scale calibration, and depth penetration limit. The development of this high speed and high resolution spectrometer is part of our ultimate goal to develop a prototype of a research-grade FD-OCT system that provides better imaging speed and resolution in comparing to available commercial OCT systems at relatively lower cost. The design of low-cost, high performance FD-OCT system would make the technology widely accessible to other researchers in the field of biomedical research and related areas in Thailand in the next few years.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.