KEYWORDS: Photomasks, Extreme ultraviolet lithography, Extreme ultraviolet, 3D modeling, Phase shifts, Systems modeling, Deep ultraviolet, Monochromatic aberrations, Diffraction, Lithography, 3D image processing, Point spread functions
The non-zero chief ray angle at the object (CRAO) in EUVL systems introduces azimuthally asymmetric phase shifts. Understanding and characterizing these effects is critical to EUVL system and mask design. The effects of 3D mask absorber geometry on diffraction phase were examined through rigorous simulation. The diffraction phase distribution was split into even and odd components to enable analogies between the well-known effects of lens aberrations and EUV 3D mask effects. Specifically, this analysis reveals that the odd component of the phase distribution is non-zero in off-axis optical systems. We have found that 3D mask effects in EUVL systems can be partially compensated in the pupil plane to minimize aerial image effects, such as best focus shifts, horizontal-vertical CD bias, and image placement error.
We explore tunable plasmonic metamaterials for electro-optic modulator applications based on ITO-based multilayer
structures. Two different structures are investigated, and modulation depth up to 38.8% can be achieved. Preliminary
results are presented for the real time response of an ITO/electrolyte gel/doped Si modulator. Furthermore, another
modulator configuration is investigated by substituting electrolyte gel by high-k dielectric material (HfO2).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.