A fiber sensor based on cascaded eccentric-core fiber Bragg grating (ECFBG) and single mode fiber Bragg grating (SMFBG) is proposed and experimentally demonstrated to realize bending and axial strain measurement simultaneously. The ECFBG is sensitive to both bending and axial strain, and the SMFBG is insensitive to bend but sensitive to axial strain. The maximum bending sensitivities of the ECFBG are 36 pm/m-1 and -37 pm/m-1 at the bending direction of 0° and 180°, respectively. The strain sensitivities of the ECFBG and SMFBG are 0.76 pm/με and 0.72 pm/με, respectively.
An in-fiber Mach-Zehnder interferometer (MZI) based on dual side-hole fiber (DSHF) was demonstrated for highly sensitive measurement of curvature. The MZI-based bending sensor is fabricated by fusion splicing a piece of DSHF in between two standard single mode fibers (SMF) with cladding alignment. Due to the existence of the two air holes and the asymmetrical cross-section of the DSHF, the DSHF-based MZI is a core-cladding interferometer which is sensitive to directional bending. The bending characteristics are investigated experimentally within the curvature range of 0-8.172m-1. The bending sensitivities of the sensor are respectively 1.464 nm/m-1 and -1.394 nm/m-1 at their two opposite bending directions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.