The theoretical analysis and experimental research of the optical parametric oscillator (OPO) based on periodically poled LiNbO3 (PPLN) crystal are presented. The wavelength tuning curves of PPLN-OPO are calculated through the coupling equations of the three-wave mixing. An optical parametric oscillator with the output signal at 1.49μm and idler at 3.8μm, which is pumped by a Nd:YAG laser at 1.064μm, is obtained based on PPLN of length 20mm and thickness 0.5mm. When the pump power of the Nd:YAG laser is 5.2W with a repetition rate of 5kHz, the output of the idler at 3.8μm reaches 307mW.
The theoretical analysis and experimental research of the optical parametric oscillator (OPO) based on periodically poled LiNbO3 (PPLN) crystal are presented. The wavelength tuning curves of PPLN-OPO are calculated through the coupling equations of the three-wave mixing. An optical parametric oscillator with the output signal at 1.49μm and idler at 3.8μm, which is pumped by a Nd:YAG laser at 1.064μm, is obtained based on PPLN of length 20mm and thickness 0.5mm. When the pump power of the Nd:YAG laser is 5.2W with a repetition rate of 5kHz, the output of the idler at 3.8μm reaches 307mW.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.