
Dispersion of Thick-Volume Gratings

Even with the same mate-
rial characteristics (thick-
ness and modulation), the
dispersion properties of
thick-volume gratings
are very different for reflec-
tion and transmission
geometries. This is due to
the significant difference in
Bragg plane density (1=L)
that is about 300–3000 lp/mm for transmission, and over
4000 lp/mm in reflection (for visible wavelengths). The
variation of the diffraction efficiency according to the wave-
length at the Bragg incidence angle is called the blaze curve.

As a general rule, thick-
volume reflection gratings
are wavelength-selective
but angularly tolerant,
which means that they
diffract the same narrow-
wavelength band (small
Dl) at any incidence angle
(large Du), making them
useful as filters.

Thick-volume transmission gratings arewavelength-dispersive
and angularly selective, which means that they diffract a large
band of wavelengths (large Dl) but in very specific directions
(small Du). When changing
the incident angle, the effi-
ciency for a particularwave-
length drops and another
one rises. The envelope of
the entire efficiency spec-
trum according to the inci-
dence angle is called the
super-blaze. Transmission
gratings are used as disper-
sive elements.
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Remarkable Thin Gratings

Depending on the type and shape of the modulation, thin
gratings have different diffraction properties. Transmit-
tance is expressed in terms of the ratio of electric fields,
and efficiency in term of the ratio of intensities.

Sinusoidal transmittance

• Modulation function: tðxÞ ¼ t0 þ Dt sinð2px=LÞ
• Requirement: Must be positive, i.e., t(x) � 0

• Only three orders are diffracted: 0, þ1, and –1. The
maximum efficiency is obtained in the þ1 and –1
orders when t0 ¼ Dt ¼ 0:5 (peak-to-peak amplitude
modulation ¼ 1):

h0 ¼ t20, h	1 ¼ ðDt=2Þ2 
 6:25%, hjmj>1 ¼ 0

Square-wave transmittance

• Modulation function: tðxÞ ¼ t0 þ Dt sgnð2px=LÞ
• Must be positive, i.e, t(x) � 0

• The diffraction efficiency in the first orders is higher
than for a sinusoidal transmittance. The maximum
efficiency is obtained when t0 ¼ Dt ¼ 0:5 (peak-to-
peak amplitude modulation ¼ 1). There are no even
orders:

h0 ¼ t20, h	1 ¼ ð2Dt=pÞ2 � 10:1%, hm¼even ¼ 0, hm¼odd ¼ 1
m2 hþ1

• Total diffracted energy:
X

m 6¼0

hm ¼ Dt2 � 24%

Sinusoidal phase

• Modulation function: wðxÞ ¼ w0 þ Dw sinð2px=LÞ
• The diffraction efficiency is expressed in terms of

first-order Bessel functions:

h0 ¼ J2
0 ðDwÞ, h	1 ¼ J2

1 ðDwÞ � 33:8%

• Maximum efficiency is achieved when Dw ¼ 0:59p
(peak-to-peak phase modulation ¼ 1:18p)

• Total diffracted energy:
X

m 6¼0

hm ¼ 1� J2
0 ðDwÞ � 100%
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Remarkable Thin Gratings (cont.)

Square-function phase

• Modulation function: wðxÞ ¼ w0 þ Dw sgnð2px=LÞ
• The diffraction efficiency in the first orders is higher

than for the sinusoidal phase. The maximum efficiency
is obtained when Dw ¼ p=2 (peak-to-peak phase
modulation ¼ p). There are no even orders:

h0 ¼ cos2ðDwÞ, h	1 ¼ 2
p
sinðDwÞ

� �2
� 40:5%,

hm¼even ¼ 0, hm¼odd ¼ 1
m2 hþ1

• Total diffracted energy:
X

m6¼0

hm ¼ sin2ðDwÞ � 100%

Sawtooth-function phase

• This corresponds to a blazed grating.

• Modulation function: wðxÞ ¼ w0 þ Dw
X1

m¼1

sin
ð2pmx=LÞ

k
• The diffraction efficiency in the first orders can be up to

100% forDw ¼ p (peak-to-peak phasemodulation¼ 2p):

h	1 ¼ sinðDwÞ
p� Dw

� �2
� 100%

Peak-to-peak amplitude modulation

Peak-to-peak phase modulation
0 π/2 π 3π/2 2π

transmittance

Square-function

Square-wave transmittance

Sinusoidal

Sinusoidal

Sawtooth-function
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Scalar Theory of Diffraction:
Kirchhoff Diffraction Integral

It would make sense to calculate the diffraction of light
starting fromMaxwell’s equations of the electromagnetic field.
However, the coupling between the electric and magnetic
vectors rapidly complicates the equation, and analytic solu-
tions can only be found for highly symmetrical cases.

The issue can be greatly simplified by replacing the electric-
vector-wave equation E with a scalar equation Eðx,y,z,tÞ:

r2E ¼ 1
c2

� �
@2E
@t2

� �

Because the magnetic component of the field is neglected, it
is assumed that the diffraction does not affect the polariza-
tion of the incident wave.

Two other assumptions are made as a basis for the
Kirchhoff diffraction integral: The open portion of the
aperture acts as a homogeneous source of the field E0ðx0,y0Þ,
as stated by Huygens’ principle, and the field is zero in the
opaque portion of the aperture.

Eðxz,yzÞ ¼
X

aperture

½incident field at x0,y0� � ½wavepropagation to z : rz0�

Note that the summation is over the aperture surface and
is 2D. It translates into the Kirchhoff diffraction integral:

Eðxz,yzÞ ¼ 1
il

Z

aperture

Eðx0,y0Þ
expðikrz0Þ

rz0
cos uds

where

rz0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ðxz � x0Þ2 þ ðyz � y0Þ2

q
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Fresnel Diffraction Integral

From the Kirchhoff diffraction integral, some simplifica-
tions are possible. For example, consider the expansion of z
in the Taylor series

ffiffiffiffiffiffiffiffiffiffiffi
1þ :

p ¼ 1þ :
2 � :2

8 þ � � �:

rz0 ¼ zþ 1
2

xz � x0
z

� �2
þ yz � y0

z

� �2� �
þ � � �

In a paraxial approximation, the aperture is small
compared to the distance z : z � xz � x0 and z � yz � y0.

• The third term of the expansion is negligible even in
the complex exponential. It must be much smaller
than 2p.

• The second term of the expansion can be dropped in
the denominator.

• cos u ¼ 1.

The simplified Kirchhoff diffraction integral is known as
the Fresnel diffraction integral:

Eðxz,yzÞ ¼ expðikzÞ
ilz

Z

aperture

Eðx0,y0Þexp
ik
2z

ðxz � x0Þ2 þ ðyz � y0Þ2
� �

ds

The near-field validity criteria of the Fresnel equation is

F ¼ ðD=2Þ2
zl

� 1

where D is the aperture diameter, z is the distance of
observation, l is the wavelength, and F is the Fresnel
number.

This equation is useful when z is large, considering the
wavelength, but not necessarily much larger than the
size of the aperture—thus the so-called “near-field”
validity.
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