
Overview: The purpose of this chapter is to introduce the basic features of a
Gaussian-beam wave in both the plane of the transmitter and the plane of the
receiver. Our main concentration of study involves the lowest-order mode or
TEM00 beam, but we also briefly introduce Hermite-Gaussian and Laguerre-
Gaussian beams as higher-order modes, or additional solutions, of the
paraxial wave equation. Each of these higher-order modes produces a
pattern of multiple spots in the receiver plane as opposed to a single (circu-
lar) spot from a lowest-order beam wave. Consequently, the analysis of such
beams is more complex than that of the TEM00 beam. One advantage in
working with the TEM00 Gaussian-beam wave model is that it also includes
the limiting classical cases of an infinite plane wave and a spherical wave.

We facilitate the free-space analysis of Gaussian-beam waves by introdu-
cing two sets of nondimensional beam parameters—one set that character-
izes the beam in the plane of the transmitter and another set that does the
same in the plane of the receiver. The beam spot radius and phase front
radius of curvature, as well as other beam properties, are readily determined
from either set of beam parameters. For example, we use the beam para-
meters to identify the size and location of the beam waist and the geometric
focus. The consistent use of these beam parameters in all the remain-
ing chapters of the text facilitates the analysis of Gaussian-beam waves
propagating through random media.

When optical elements such as aperture stops and lenses exist at various
locations along the propagation path, the method of ABCD ray matrices
can be used to characterize these elements (including the free-space propa-
gation between elements). By cascading the matrices in sequence, the
entire optical path between the input and output planes can be represented
by a single 2�2 matrix. The use of these ray matrices, which is based on
the paraxial approximation, greatly simplifies the treatment of propagation
through several such optical elements. In later chapters we will extend this
technique to propagation paths that also include atmospheric turbulence
along portions of the path.

4.1 Introduction

The mathematical description of a propagating wave involves the notion of a field.
Basically, a field u(R, t) is a function of space R ¼ (x, y, z) and time t that satisfies
a partial differential equation. In the case of electromagnetic radiation, the field
may be a transverse electromagnetic (TEM) wave, whereas for acoustic waves
the field may represent a pressure wave. The governing equation in most cases
is the wave equation

r2u ¼
1

c2

@2u

@t2
, (1)
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where c represents the speed of the propagating wave and r
2 is the Laplacian

operator defined in rectangular coordinates by

r2u ¼
@2u

@x2
þ
@2u

@y2
þ
@2u

@z2
: (2)

For electromagnetic waves, the constant c ¼ 3 � 108 m/s is the speed of light.
If we assume that time variations in the field are sinusoidal (i.e., a mono-

chromatic wave), then we look for solutions of (1) of the form u(R, t) ¼
U0(R)e2ivt, where v is the angular frequency and U0(R) is the complex
amplitude of the wave.1 The substitution of this solution form into Eq. (1) leads
to the time-independent reduced wave equation (or Helmholtz equation)

r2U0 þ k2U0 ¼ 0, (3)

where k is the optical wave number related to the optical wavelength l by
k ¼ v/c ¼ 2p/l.

4.2 Paraxial Wave Equation

For optical wave propagation, we can further reduce the Helmholtz equation (3) to
what is called the paraxial wave equation. To begin, let us assume the beam orig-
inates in the plane at z ¼ 0 and propagates along the positive z-axis. If we also
assume the free-space optical field at any point along the propagation path
remains rotationally symmetric, then it can be expressed as a function of r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and z. Thus, the reduced wave equation (3) in cylindrical coordinates

can be written as

1

r

@

@r
r
@U0

@r

� �
þ
@ 2U0

@z2
þ k2U0 ¼ 0: (4)

For reasons of simplification in the solution process, it is customary to first make
the substitution U0(r, z) ¼ V(r, z)eikz in Eq. (4), which leads to

1

r

@

@r
r
@V

@r

� �
þ
@2V

@z2
þ 2ik

@V

@z
¼ 0: (5)

To further simplify Eq. (5), we make use of the so-called “paraxial approximation.”

4.2.1 Paraxial approximation

The paraxial approximation is based on the notion that the propagation distance for
an optical wave along the z-axis is much greater than the transverse spreading of
the wave. Thus, if R ¼ (r, z) and S ¼ (s, 0) denote two points in space with r and s

1Because the time factor e2ivt of the field is usually omitted in wave propagation studies, it is

common practice to also refer to the complex amplitude U0(R) as the (spatial) field.
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transverse to the propagation axis, then the distance between such points is (see
Fig. 4.1)

jR� Sj ¼ z2 þ jr� sj2
� �1=2

¼ z 1 þ
jr� sj2

z2

� �1=2

: (6)

If we assume that the transverse distance is much smaller than the longitudinal
propagation distance between the points, then we may expand the second factor
in (6) in a binomial series to obtain

jR� Sj ¼ z 1 þ
jr� sj2

2z2
þ � � �

� �

¼ zþ
jr� sj2

2z
þ � � � , jr� sj � z: (7)

Dropping all remaining terms on the right-hand side of Eq. (7) after the first two
shown constitutes what is called the paraxial approximation.

As a consequence of the paraxial assumption leading to (7), it follows that

@2V

@z2

����
����� 2k

@V

@z

����
����, @2V

@z2

����
����� 1

r

@

@r
r
@V

@r

� �����
����: (8)

The inequalities (8) are based on the fact that diffraction effects on the optical wave
V(r, z) change slowly with respect to propagation distance z, and also with respect
to transverse variations due to the finite size of the beam. The significance of these
inequalities is that they permit us to set @ 2V=@z2 ¼ 0 in Eq. (5), from which we
obtain the paraxial wave equation2

1

r

@

@r
r
@V

@r

� �
þ 2ik

@V

@z
¼ 0: (9)

There are basically two methods of solution of (9), one called the direct method
and the other relying on the Huygens-Fresnel integral (see Sections 4.3.3 and
4.3.4).
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.

Figure 4.1 Geometry for Eq. (6).

2Equation (9) is also known as the parabolic equation.

86 Chapter 4



4.3 Optical Wave Models

Most theoretical treatments of optical wave propagation have concentrated on
simple field models such as an unbounded plane wave or spherical wave, the
latter often taken as a point source. However, in many applications the plane
wave and spherical wave approximations are not sufficient to characterize propa-
gation properties of the wave, particularly when focusing and diverging character-
istics are important. In such cases the lowest-order Gaussian-beam wave model is
usually introduced, limiting forms of which lead to the plane wave and spherical
wave models. For certain types of lasers it may also be necessary to introduce the
higher-order Gaussian modes in either rectangular or cylindrical coordinates (e.g.,
see Section 4.7 and also Chap. 17).

4.3.1 Plane wave and spherical wave models

A plane wave is defined as one in which the equiphase surfaces (phase fronts) form
parallel planes. The mathematical description of a general plane wave in the plane
of the transmitter at z ¼ 0 is

z ¼ 0: U0(r, 0) ¼ A0e
iw0 , (10)

where A0 is a constant that represents the strength or amplitude of the wave field
and w0 is the phase. If the plane wave is propagating along the positive z-axis in
free space, the complex amplitude at distance z from the transmitter takes the
form [1,2]

z . 0: U0(r, z) ¼ V(r, z)eikz ¼ A0e
iw0þikz, (11)

where V(r, z) ¼ A0e
iw0 represents a solution of the paraxial wave equation (9).

Hence, the plane wave field remains that of a plane wave with changes occurring
only in the phase.

A spherical wave is characterized by concentric spheres forming the equiphase
surfaces. For a spherical wave emanating from the origin, we have

z ¼ 0: U0(r, 0) ¼ lim
R!0

A0e
ikR

4pR
ffi A0d(r), (12)

where d(r) is the Dirac delta function. At distance z from the transmitter, the
solution of the paraxial wave equation for an initial spherical wave leads to [2]

z . 0: U0(r, z) ¼
A0

4pz
exp ikzþ

ikr2

2z

� �
¼ A exp ik zþ

r2

2z

� �� �
: (13)

Here the amplitude A ¼ A0=4pz is scaled by distance and the phase w ¼

k(zþ r2=2z) has a transverse radial dependency. Because (13) represents the
solution of (9) for a point source input (12), it also represents a form of
free-space Green’s function for the paraxial wave equation (see Section 4.3.4).
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4.3.2 Lowest-order Gaussian-beam wave

Let us consider the propagation in free space of a lowest-order transverse electro-
magnetic (TEM) Gaussian-beam wave, also called a TEM00 wave. It is assumed
the transmitting aperture is located in the plane z ¼ 0 and the amplitude distri-
bution in this plane is Gaussian with effective beam radius (spot size) W0 [m],
where W0 denotes the radius at which the field amplitude falls to 1/e of that on
the beam axis as shown in Fig. 4.2. In addition, the phase front is taken to be para-
bolic with radius of curvature F0 [m]. The particular cases F0 ¼ 1,F0 . 0, and
F0 , 0 correspond to collimated, convergent, and divergent beam forms, respect-
ively (see Fig. 4.3). If the field of the wave at z ¼ 0 has amplitude a0 [(W/m2)1/2]
on the optical axis (r ¼ 0), it is therefore described by [2]

z ¼ 0: U0(r, 0) ¼ a0 exp �
r 2

W 2
0

�
ikr 2

2F0

� �
¼ a0 exp �

1

2
a0kr

2

� �
, (14)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is radial distance from the beam center line anda0 is a complex

parameter related to spot size and phase front radius of curvature according to

a0 ¼
2

kW2
0

þ i
1

F0

: ½m�1� (15)

In comparing the functional form (14) with that of an unbounded plane wave [see
Eq. (10)], we identify the amplitude and phase, respectively, of a Gaussian-beam
wave as

A0 ¼ a0 exp �
r 2

W 2
0

� �
, (16)

w0 ¼ �
kr 2

2F0

: (17)

Figure 4.2 Amplitude profile of a Gaussian-beam wave.
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Thus, both amplitude and phase of a Gaussian-beam wave depend on the trans-
verse distance r. The negative sign appearing in the phase (17) is a consequence
of the sign convention used to define the phase front radius of curvature F0.

4.3.3 Paraxial equation: direct solution method

To directly solve the paraxial wave equation (9), we will explicitly look for a
Gaussian function as a solution. Hence, we start by looking for solutions of the
general form [3,4]

V(r, z) ¼ A(z) exp �
1

p(z)

a0kr
2

2

� �� �
, (18)

where A(z) represents the on-axis complex amplitude of the wave and p(z) is a
propagation parameter related to the complex radius of curvature. Clearly, in
order that Eq. (18) reduce to the initial Gaussian-beam form given by Eq. (14),
these functions must satisfy the initial conditions

p(0) ¼ 1,

A(0) ¼ a0 ¼ 1,
(19)

where we now set a0 ¼ 1 for mathematical convenience. By substituting Eq. (18)
into (9) and simplifying, we obtain

a2
0k

2r2A(z) þ ia0k
2r2A(z)p0(z) � 2a0kA(z)p(z) þ 2ikA0(z)p2(z) ¼ 0: (20)

(a) F0 > 0

2W0

z

(b)

2W0
z

F0 = ∞

(c)

F0 < 0

2W0
z

Figure 4.3 (a) Convergent beam, (b) collimated beam, and (c) divergent beam.

Free-Space Propagation of Gaussian-Beam Waves 89



Next, by setting terms involving like powers of r to zero, we obtain the pair of
simple first-order differential equations

r2: p0(z) ¼ ia0 ¼ �
1

F0

þ i
2

kW2
0

, (21)

r0: A0(z) ¼ �
ia0

p(z)
A(z) ¼ �

p0(z)

p(z)
A(z): (22)

The simultaneous solution of Eqs. (21) and (22) together with the initial conditions
(19) yield

p(z) ¼ 1 þ ia0z ¼ 1 �
z

F0

þ i
2z

kW2
0

,

A(z) ¼
1

p(z)
¼

1

1 þ ia0z
:

(23)

In summary, the complex amplitude at distance z from the source is the Gaussian-
beam wave

U0(r, z) ¼ V(r, z)eikz ¼
1

1 þ ia0z
exp ikz�

1

2

a0k

1 þ ia0z

� �
r 2

� �

¼
1

1 þ ia0z
exp ikzþ

ik

2z

ia0z

1 þ ia0z

� �
r 2

� �
,

(24)

where the final form of (24) is chosen for later mathematical convenience.

4.3.4 Paraxial equation: Huygens-Fresnel integral

The Huygens-Fresnel integral provides another method of analysis that leads to the
same result as Eq. (24) for the complex amplitude at position z along the propa-
gation path, but has the distinct advantage that it can be extended to the case
where the propagation path includes several optical elements arbitrarily distributed
along the path (e.g., see Sections 4.9 and 4.10). In the present formulation, the
complex amplitude at propagation distance z from the source is represented by
the Huygens-Fresnel integral [4,5]

U0(r, z) ¼ �2ik

ð ð1
�1

G(s, r; z)U0(s, 0)d2s, (25)

where U0(s, 0) is the optical wave at the source plane and G(s, r; z) is the free-space
Green’s function. In general, the free-space Green’s function is a spherical wave
which, under the paraxial approximation, can be expressed as [recall Eqs. (7)
and (13)]

G(s, r; z) ¼
eikjR�Sj

4pjR� Sj
ffi

1

4pz
exp ikzþ

ik

2z
js� rj2

� �
: (26)
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Although we will not do so here (see Example 4 in Worked Examples), it can be
shown that Eq. (25) represents a formal solution of the initial value problem

1

r

@

@r
r
@V

@r

� �
þ 2ik

@V

@z
¼ 0,

V(r, 0) ; U0(r, 0) ¼ exp �
r2

W2
0

�
ikr2

2F0

� �
,

(27)

where V(r, z) ¼ U0(r, z)e�ikz. Instead, we illustrate that the optical wave
represented by Eq. (25) is the same as that given by Eq. (24). We start by writing
the complex amplitude of the Gaussian-beam wave at the source plane z ¼ 0 as

U0(s, 0) ¼ exp �
1

2
a0ks

2

� �
¼ exp

ik

2z
(ia0z)s

2

� �
: (28)

The substitution of Eq. (28) into Eq. (25) yields

U0(r, z) ¼ �
ik

2pz
exp ikzþ

ik

2z
r2

� �ð ð1
�1

exp �
ik

z
r � s

� �
exp

ik

2z
(1 þ ia0z)s

2

� �
d2s

¼ �
ik

2pz
exp ikzþ

ik

2z
r2

� �ð1
0

ð2p

0

exp �
ik

z
rs cos u

� �

� exp
ik

2z
(1 þ ia0z)s

2

� �
s du ds, ð29Þ

where we have changed to polar coordinates in the second step, i.e., d2s ¼ s du ds.
Performing the inside integration yields (integral #9 in Appendix II)ð2p

0

exp �
ik

z
rs cos u

� �
du ¼ 2p J0

krs

z

� �
, (30)

where J0(x) is a Bessel function of the first kind and order zero [6]. The remaining
integration on s gives us (integral #10 in Appendix II)

U0(r, z) ¼ �
ik

z
exp ikzþ

ik

2z
r2

� �ð1
0

s J0

krs

z

� �
exp

ik

2z
(1 þ ia0z)s

2

� �
ds

¼
1

1 þ ia0z
exp ikzþ

ik

2z

ia0z

1 þ ia0z

� �
r2

� �
,

(31)

which is the same as Eq. (24). Thus, we have established the equivalence of the
direct method and the Huygens-Fresnel integral.

4.4 Diffractive Properties of Gaussian-Beam Waves

Early studies of the diffractive characteristics of Gaussian-beam waves for the
design and analysis of laser systems include those of Refs. [3,7–12]. Kogelnik
and Li [3] provide a good review of the basic theory of laser beams and resonators,
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and they also discuss the use of ABCD ray matrices to illustrate Gaussian-beam
wave propagation through optical structures. Graphical representations of
Gaussian-beam wave propagation in optical resonators with circle diagrams
were first proposed by Collins [8], and Li [9] extended the notion to the case of
dual circles. Arnaud [13] suggested a graphic method for determining the beam
parameters that is essentially the y�y diagram method introduced by Delano [7].
Kessler and Schack [14] illustrated the utility of the y�y diagram method as a
helpful design tool for synthesizing and analyzing optical systems. Andrews
et al. [15] developed a method of Gaussian-beam wave analysis through the
use of two pairs of Gaussian-beam parameters that are linked through an elemen-
tary conformal transformation. The basic beam characteristics are readily
identified in either plane through simple geometric and analytic relations. In this
chapter we review the basic notation and relations introduced in Ref. [15],
which in turn are utilized in our subsequent analysis of Gaussian-beam wave
propagation through random media. We believe the consistent use of these
beam parameters throughout the text can assist the development of physical
intuition for the reader.

4.4.1 Input plane beam parameters

Let us consider the line-of-sight propagation of a Gaussian beam from the input
plane positioned at z ¼ 0 to the output plane at z . 0. By line of sight, we mean
the transmitter and receiver are able to “see” each other (no optical elements
exist between input and output planes). To begin, we express the propagation
parameter p(z) in the form [see Eqs. (23)]

p(z) ¼ 1 þ ia0z ¼ Q0 þ iL0, (32)

where Q0 and L0 are the real and imaginary parts of p(z) defined by

Q0 ¼ 1 �
z

F0

, L0 ¼
2z

kW2
0

: (33)

Next, by making the observation

ia0z

1 þ ia0z
¼ 1 �

1

Q0 þ iL0

¼
Q0(Q0 � 1) þ L2

0

Q2
0 þ L2

0

þ i
L0

Q2
0 þ L2

0

and writing

p(z) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

0 þ L2
0

q
exp i tan�1 L0

Q0

� �
, (34)

it follows from Eq. (24) that
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U0(r, z) ¼
1

1 þ ia0z
exp ikzþ

ik

2z

ia0z

1 þ ia0z

� �
r2

� �

¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2
0 þ L2

0

q exp �
r2

W2

� �
exp i kz� w�

kr2

2F

� �� �
,

(35)

where w, W, and F represent the longitudinal phase shift, spot size radius, and
radius of curvature at position z along the propagation path. These quantities
are defined, respectively, in terms of beam parameters Q0 and L0 by

w ¼ tan�1 L0

Q0

, (36)

W ¼ W0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

0 þ L2
0

q
, (37)

F ¼
kW2

0

2

L0 Q2
0 þ L2

0

� �
Q0(1 �Q0) � L2

0

" #
¼

F0 Q2
0 þ L2

0

� �
(Q0 � 1)

Q2
0 þ L2

0 �Q0

: (38)

Because they involve beam characteristics at the input plane (transmitter), we
refer to the pair of nondimensional quantities Q0 and L0 as input plane (or trans-
mitter) beam parameters. The parameter Q0 is also called the curvature parameter
and L0 is the Fresnel ratio at the input plane. For fixed path length z ¼ L and
radius of curvature F0, the curvature parameter identifies collimated, convergent,
and divergent beam forms, respectively, according to Q0 ¼ 1, Q0 , 1, and
Q0 . 1.

By examination of Eq. (35), we recognize that the input plane beam parameters
Q0 and L0 characterize the refractive (focusing) and diffractive changes,
respectively, in the on-axis amplitude of the Gaussian beam. In particular, after
propagating a distance z, the on-axis amplitude of the beam takes the form

A ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1 � z=F0)2 (2z=kW2
0 )2

q ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2
0 þ L2

0

q :

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
refraction

þ |fflfflfflfflfflffl{zfflfflfflfflfflffl}
diffraction

(39)

For a Gaussian-beam wave, the longitudinal phase shift (36) varies from zero at
the transmitter up to p as the propagation path length becomes infinite (see Section
4.5). In the limiting case of a plane wave, however, this phase shift is always zero
because L0 ¼ 0. Except for a convergent beam, diffraction effects cause the spot
size radius of the beam (37) to increase steadily along the entire propagation path.
That is, the spot radius will initially decrease for a transmitted convergent beam
until it reaches the waist region and then increase in accordance with the spot
radius of a collimated beam [see Fig. 4.3(a)]. To illustrate the general behavior
of the phase front radius of curvature (38) along the propagation path, we plot
the ratio F=F0 as a function of scaled distance z=F0 in Fig. 4.4 for a convergent
beam in which 2F0=kW

2
0 ¼ 1. Observe that the radius of curvature has a positive

Free-Space Propagation of Gaussian-Beam Waves 93



sign prior to the beam waist (the minimum beam spot size) and becomes
unbounded at the waist (i.e., the phase front is planar). Upon passing through
the waist region, the phase front radius of curvature changes sign to negative
and remains so for the rest of the path. Also, at the geometric focus the phase
front radius of curvature is always the negative of that at the transmitter.

The irradiance or intensity of the optical wave is the squared magnitude of the
field. Thus, at the receiver the irradiance is

I 0(r, z) ¼ jU0(r, z)j2

¼ I 0(0, z) exp �
2r2

W2

� �
, W/m2


 � (40)

where

I 0(0, z) ¼
W2

0

W2
¼

1

Q2
0 þ L2

0

(41)

is the on-axis irradiance. Finally, because we assume no loss of power, the total
power at the receiver (or transmitter) is

P ¼

ð ð1
�1

I 0(r, 0)d2r ¼

ð ð1
�1

I0(r, z)d2r ¼
1

2
pW2

0 : ½W� (42)

4.4.2 Output plane beam parameters

Although the beam characteristics (36)–(38) are well defined using the input plane
beam parameters, it is instructive to present a parallel development of these

Figure 4.4 Scaled phase front radius of curvature as a function of scaled propagation

distance.
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