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Coherent-Mode Representation of Optical
Fields and Sources

1.1 Introduction

In the 1980s, E. Wolf proposed a new theory of partial coherence formulated in
the space-frequency domain.1,2 The fundamental result of this theory is the fact
that a stationary optical field of any state of coherence may be represented as a
superposition of coherent modes, i.e., elementary uncorrelated field oscillations
that are spatially completely coherent.† The importance of this result can hardly be
exaggerated since it opens a new perspective in understanding and interpreting the
physics of generation, propagation, and transformation of optical radiation. In this
chapter, using primarily the basic book by Mandel and Wolf,4 we give an outline of
the theory of optical coherence in the space-frequency domain and coherent-mode
representations of an optical field. We also consider the concept of the effective
number of modes needed for the coherent-mode representation of an optical field,5

and give a brief survey of the known coherent-mode representations of some model
sources, namely, the Gaussian Schell-model source ,6–9 Bessel correlated source,10

and the Lambertian source.11

1.2 Foundations of the Coherence Theory in the
Space-Frequency Domain

Let us consider a scalar quasi-monochromatic optical field occupying some finite
closed domain D. Let V (r, t) be the complex analytic signal associated with this
field at a point specified by the position vector r = (x, y, z) and at time t . For any
realistic optical field, V (r, t) is a fluctuating function of time, which may be re-
garded as a sample realization of some random process. Hence, in the general case,
an optical field can only be described in statistical terms. Within the framework of
the second-order moments theory of random processes, the statistical description
of a fluctuating field is given by the cross-correlation function �(r1, r2, t1, t2), de-
fined as

� (r1, r2, t1, t2) = 〈V ∗ (r1, t1)V (r2, t2)
〉
, (1.1)

†A similar result has been obtained in the past by H. Gamo in the framework of matrix treatment of
partial coherence.3
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2 Coherent-Mode Representations in Optics

where the asterisk denotes the complex conjugate and the angle brackets denote
the average taken over an ensemble of all possible process realizations. The ran-
dom field is said to be stationary in the wide sense if its cross-correlation function
depends on the two time arguments only through their difference τ = t2 − t1, i.e.,

� (r1, r2,τ) = 〈V ∗ (r1, t)V (r2, t + τ)
〉
. (1.2)

The cross-correlation function �(r1, r2,τ) is known as the mutual coherence func-
tion and represents the central quantity of the classical theory of optical coher-
ence. It may be noted that �(r1, r2,τ) describes an optical field in the space-time
domain.

An alternative statistical description of an optical field may be obtained by
assuming that �(r1, r2,τ) is absolutely integrable in the range −∞ < τ < ∞ and,
hence, may be represented by its Fourier transform

W (r1, r2,ν) =
∫ ∞

−∞
� (r1, r2,τ) exp (−i2πντ)dτ, (1.3)

where the Fourier variable ν has the meaning of frequency. The function
W(r1, r2,ν) is known as the cross-spectral density function of the field and repre-
sents the central quantity of the coherence theory in the space-frequency domain.

We will now note a few important properties of the cross-spectral density func-
tion. In the first place, assuming that W(r1, r2,ν) is a continuous function of r1
and r2 bounded throughout the domain D, one necessarily finds that it is square
integrable in D, i.e., ∫ ∫

D

|W (r1, r2,ν)|2 dr1dr2 < ∞. (1.4)

In the second place, W(r1, r2,ν) possesses Hermitian symmetry, i.e.,

W (r2, r1,ν) = W ∗ (r1, r2,ν) , (1.5)

which follows at once on taking the Fourier transform of both sides of the evident
equality �(r2, r1,−τ) = �∗(r1, r2,τ). In the third place, it may be shown (see
Ref. 1, Appendix A) that W(r1, r2,ν) is a nonnegative definite function, i.e.,∫ ∫

D

W (r1, r2,ν)f ∗ (r1) f (r2)dr1dr2 � 0, (1.6)

where f (r) is any square-integrable function.
In the particular case when r1 = r2 = r, the cross-spectral density function

becomes the spectral density

S (r,ν) = W (r, r,ν) . (1.7)
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Inequality (1.6), together with definition (1.7), implies that

S (r,ν) � 0 (1.8)

and

|W (r1, r2,ν)| � [S (r1,ν)]1/2 [S (r2,ν)]1/2 . (1.9)

In view of inequality (1.9), the normalized cross-spectral density function may be
defined as

µ (r1, r2,ν) = W (r1, r2,ν)

[S (r1,ν)]1/2 [S (r2,ν)]1/2
, (1.10)

known as the spectral degree of coherence. The following relation for µ(r1, r2,ν)

is obvious:

0 � |µ (r1, r2,ν)| � 1. (1.11)

When |µ| = 0 for each pair of different points r1 and r2, the field is referred
to as completely incoherent; when |µ| = 1, as completely coherent; and when
0 < |µ| < 1, as partially coherent in space.

We will now consider the propagation of the cross-spectral density in free
space, i.e., in the space that does not contain any sources or absorbers. As is well
known,4 the mutual coherence function �(r1, r2,τ) satisfies, in free space, the two
wave equations

∇2
1� (r1, r2,τ) = 1

c2

∂2

∂τ2
� (r1, r2,τ) , (1.12a)

∇2
2� (r1, r2,τ) = 1

c2

∂2

∂τ2
� (r1, r2,τ) , (1.12b)

where ∇2
1(2) is the Laplacian operator taken with respect to the point r1(2), and c is

the speed of light in a vacuum. Then, taking the Fourier transform of Eqs. (1.12)
with respect to variable τ, we find that the cross-spectral density W(r1, r2,ν) prop-
agates in free space in accordance with the coupled Helmholtz equations

∇2
1W (r1, r2,ν) + k2W (r1, r2,ν) = 0, (1.13a)

∇2
2W (r1, r2,ν) + k2W (r1, r2,ν) = 0, (1.13b)

where k = 2πν/c is the wave number. Furthermore, it will be useful to find the
solution of these equations for the case when an optical field propagates into a
half-space z > 0 with the known boundary values of cross-spectral density at all
pairs of points x1 = (x1, y1) and x2 = (x2, y2) in the plane z = 0 (Fig. 1.1). The
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solution of Eq. (1.13b) for fixed r1 is given by Rayleigh’s first diffraction formula4

as

W (r1, r2,ν) = − 1

2π

∫
(z=0)

W (r1,x2,ν)
∂

∂z2

[
exp (ikR2)

R2

]
dx2, (1.14)

where R2 = |r2 −x2|. The solution of Eq. (1.13a) for r2 = x2 is consequently given
by

W (r1,x2,ν) = − 1

2π

∫
(z=0)

W (x1,x2,ν)
∂

∂z1

[
exp (−ikR1)

R1

]
dx1, (1.15)

where R1 = |r1 − x1|. On inserting Eq. (1.15) into Eq. (1.14), we obtain the fol-
lowing joint solution of Eqs. (1.13):

W (r1, r2,ν) = 1

(2π)2

∫ ∫
(z=0)

W (x1,x2,ν)

× ∂

∂z1

[
exp (−ikR1)

R1

]
∂

∂z2

[
exp (ikR2)

R2

]
dx1dx2. (1.16)

Calculating the derivatives in Eq. (1.16) and assuming that (1/r1(2)) � k, one may
readily find the following approximate expression for propagation of the cross-
spectral density into the half-space:

W (r1, r2,ν) =
(

k

2π

)2 ∫ ∫
(z=0)

W (x1,x2,ν)

× exp [ik(R2 − R1)]

R1R2
cosθ1 cosθ2dx1dx2. (1.17)

Figure 1.1 Notation relating to the propagation of the cross-spectral density function from
the plane z = 0 into the half-space z > 0.
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1.3 Coherent-Mode Structure of the Field

As is well known from the theory of integral equations, any continuous func-
tion that satisfies conditions (1.4)–(1.6) and, hence, the cross-spectral density
W(r1, r2,ν), may be expressed in the form of Mercer’s expansion as

W (r1, r2,ν) =
∑
n

λn (ν)ϕ∗
n (r1,ν)ϕn (r2,ν) , (1.18)

where λn(ν) are the eigenvalues and ϕn(r,ν) are the eigenfunctions of the homo-
geneous Fredholm integral equation of the second kind,∫

D

W (r1, r2,ν)ϕn (r1,ν)dr1 = λn (ν)ϕn (r2,ν) . (1.19)

It is important to stress that all the eigenvalues λn(ν) are real and nonnegative, i.e.,

λ∗
n (ν) = λn (ν) � 0, (1.20)

and the eigenfunctions ϕn(r,ν) are mutually orthonormal in D (if it is not already
so, this may be achieved using the Gram-Schmidt procedure), i.e.,∫

D

ϕ∗
n (r,ν)ϕm (r,ν)dr = δnm, (1.21)

where δnm is the Kronecker symbol. It is appropriate to ascertain one more property
of the eigenfunctions ϕn(r,ν). On inserting Eq. (1.18) into Eq. (1.13b), we obtain∑

n

λn (ν)ϕ∗
n (r1,ν)∇2

2ϕn (r2,ν) + k2
∑
n

λn (ν)ϕ∗
n (r1,ν)ϕn (r2,ν) = 0.

(1.22)
Next, multiplying Eq. (1.22) by ϕm(r1,ν), integrating the result with respect to r1
over the domain D, and making use of the orthonormality relation (1.21), we find
that the eigenfunctions ϕn(r,ν) satisfy the Helmholtz equation,

∇2ϕn (r,ν) + k2ϕn (r,ν) = 0. (1.23)

To clear up the physical meaning of expansion (1.18), we rewrite it in the form

W (r1, r2,ν) =
∑
n

λn (ν)Wn (r1, r2,ν) , (1.24)

where

Wn (r1, r2,ν) = ϕ∗
n (r1,ν)ϕn (r2,ν) . (1.25)
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It follows directly from Eqs. (1.23) and (1.25) that the function Wn(r1, r2,ν) sat-
isfies the equations

∇2
1Wn (r1, r2,ν) + k2Wn (r1, r2,ν) = 0, (1.26a)

∇2
2Wn (r1, r2,ν) + k2Wn (r1, r2,ν) = 0, (1.26b)

which are just the same as those governing the free-space propagation of the cross-
spectral density W(r1, r2,ν). Hence, the function Wn(r1, r2,ν) may be regarded
as the cross-spectral density associated with a mode of the field. Next, making use
of Eqs. (1.10) and (1.25), we find that the spectral degree of coherence of each field
mode is given by

µn (r1, r2,ν) = ϕ∗
n (r1,ν)ϕn (r2,ν)

|ϕn (r1,ν)| |ϕn (r2,ν)| . (1.27)

It follows from Eq. (1.27) that

|µn (r1, r2,ν)| = 1, (1.28)

i.e., that each field mode represents the spatially completely coherent contribution.
Thus, expansion (1.24) may be interpreted as representing the cross-spectral den-
sity of the field as a superposition of contributions from modes that are completely
coherent in the space-frequency domain. For this reason, we will refer to expansion
(1.18) as the coherent-mode representation of the field. We will also refer to the set

� = {λn (ν) ,ϕn (r,ν)} (1.29)

as the coherent-mode structure of the field. In the special case when the integral
equation (1.19) admits only one solution ϕ(r,ν) associated with an eigenvalue
λ(ν), Eq. (1.18) takes the form

W (r1, r2,ν) = λ (ν)ϕ∗ (r1,ν)ϕ (r2,ν) , (1.30)

which implies that the field consists of the sole coherent mode, i.e., that it is spa-
tially completely coherent at frequency ν.

Equation (1.18) allows us to obtain some other useful coherent-mode repre-
sentations. Indeed, on making use of representation (1.18) in definition (1.7), we
obtain the relation

S (r,ν) =
∑
n

λn (ν) |ϕn (r,ν)|2 . (1.31)

On integrating Eq. (1.31) over D with due regard for Eq. (1.21), we come to the
relation ∫

D

S (r,ν)dr =
∑
n

λn (ν) . (1.32)
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On making use of definition (1.25) and Eq. (1.21), we obtain the following ortho-
normality relation:∫ ∫

D

W ∗
n (r1, r2,ν)Wm (r1, r2,ν)dr1dr2 = δnm. (1.33)

Finally, applying the relation

|W (r1, r2,ν)|2 =
∑
n

∑
m

λn (ν)λm (ν)W ∗
n (r1, r2,ν)Wm (r1, r2,ν) , (1.34)

obtained directly from definition (1.25), and integrating its both sides twice over
the domain D with due regard for relation (1.33), we find that∫ ∫

D

|W (r1, r2,ν)|2 dr1dr2 =
∑
n

λ2
n (ν) . (1.35)

The deduced modal relations (1.31), (1.32), and (1.35), as well as the basic
coherent-mode representation (1.18), will be widely used in our subsequent con-
siderations.

1.4 Ensemble Representation of the Cross-Spectral Density
Function

On making use of the coherent-mode representation (1.18), one may deduce an-
other useful representation of the cross-spectral density function expressed in terms
of the ensemble of field realizations.

Let us construct a random function of the form

U (r,ν) =
∑
n

an (ν)ϕn (r,ν) , (1.36)

where ϕn(r,ν) are, as before, the eigenfunctions of Eq. (1.19) and an(ν) are some
random variables that will be specified later. Since, as follows from Eq. (1.23), each
term in expansion (1.36) satisfies the Helmholtz equation, the function U(r,ν)

does the same, i.e.,

∇2U (r,ν) + k2U (r,ν) = 0. (1.37)

Hence, the function U(r,ν) may be considered as an optical signal, i.e., the time-
independent part of a monochromatic wave function

V (r, t) = U (r,ν) exp (−i2πνt) . (1.38)
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The cross-correlation function of the optical signal (1.36) at two points r1 and r2

is given by

〈
U∗ (r1,ν)U (r2,ν)

〉=∑
n

∑
m

〈
a∗
n (ν) am (ν)

〉
ϕ∗ (r1,ν)ϕ (r2,ν) , (1.39)

where the angle brackets, unlike those used in Eq. (1.1), this time denote the sta-
tistical averaging over an ensemble of frequency-dependent (not time-dependent)
realizations.

Let us now assume that the random variables an(ν) are chosen to satisfy the
condition

〈
a∗
n (ν) am (ν)

〉= λn (ν)δnm, (1.40)

where λn(ν) are, as before, the eigenvalues of Eq. (1.19). The condition (1.40) can
be satisfied, for example, by taking

an (ν) = [λn (ν)]1/2 exp (iθn) , (1.41)

where θn are statistically independent random variables uniformly distributed in
the interval [0,2π]. Applying condition (1.40) to Eq. (1.39), we obtain

〈
U∗ (r1,ν)U (r2,ν)

〉=∑
n

λn (ν)ϕ∗
n (r1,ν)ϕn (r2,ν) . (1.42)

Finally, comparing Eqs. (1.42) and (1.18), we come to a new representation of the
cross-spectral density function in the form

W (r1, r2,ν) = 〈U∗ (r1,ν)U (r2,ν)
〉
. (1.43)

This ensemble representation may be considered as an alternative definition of the
cross-spectral density function W(r1, r2,ν) in the form of the cross-correlation
function of the optical signal given by Eq. (1.36) with condition (1.40). Applying
this definition, we may obtain a new representation of the spectral density S(r,ν),

S (r,ν) =
〈
|U (r,ν)|2

〉
. (1.44)

This representation clearly shows that spectral density represents the spatial distri-
bution of an average squared modulus of monochromatic oscillations and, hence,
S(r,ν) may be referred to as the power spectrum of an optical field.



Coherent-Mode Representation of Optical Fields and Sources 9

1.5 Effective Number of Coherent Modes

We will inquire now about the number of coherent modes needed to represent
a random field in D. To do this, we use the concept of the effective number of
coherent modes introduced in Ref. 5.

As follows from Section 1.3, the eigenvalues λn(ν) may be arranged in a non-
increasing sequence as

λ0 (ν) � λ1 (ν) � λ2 (ν) � · · · � λn (ν) � · · · � 0. (1.45)

Hence, one may equate each of the lowest-order eigenvalues in Eq. (1.32) with
λ0(ν), and take the rest to be equal to zero. This allows the following definition of
the effective number N (ν) of coherent modes needed to represent the field:

N (ν) ≡ 1

λ0 (ν)

∞∑
n=0

λn (ν) . (1.46)

As can be seen, the number N (ν) is, in general, noninteger; but for convenience,
in practice it may be approximated by its integer part. It is obvious that the number
N (ν) depends on the statistical properties of the field. To estimate its upper bound,
we use the inequality

∞∑
n=0

(
λn (ν)

λ0 (ν)

)2

�
∞∑

n=0

λn (ν)

λ0 (ν)
, (1.47)

which is true in view of relation (1.45). From this inequality we obtain a lower
bound on the value λ0(ν) as

λ0 (ν) �

∞∑
n=0

λ2
n (ν)

∞∑
n=0

λn (ν)

. (1.48)

On making use of Eqs. (1.48) and (1.46), we find the upper bound on the number
N (ν) to be

N (ν) �

( ∞∑
n=0

λn (ν)

)2

∞∑
n=0

λ2
n (ν)

. (1.49)

Finally, to express the upper bound on the effective number of coherent modes
needed to represent the field in terms of the cross-spectral density, we apply the
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modal relations (1.32) and (1.35) into Eq. (1.49) to obtain

N (ν) �
(∫

D
S (r,ν)dr

)2∫∫
D

|W (r1, r2,ν)|2 dr1dr2
. (1.50)

To clarify the physical meaning of the obtained result, in Ref. 5 the following
definitions of the effective volume of the field and the effective coherence volume
are introduced, respectively:

Ve (ν) = 1

Smax (ν)

∫
D

S (r,ν)dr, (1.51)

Vce (ν) = 1

Ve(ν)S2
max (ν)

∫ ∫
D

|W (r1, r2,ν)|2 dr1dr2, (1.52)

where

Smax (ν) = max
r∈D

S (r,ν) . (1.53)

By applying definitions (1.51) and (1.52) into Eq. (1.50), we obtain

N (ν) � Ve (ν)

Vce (ν)
. (1.54)

Thus, the more incoherent is the field, the more coherent modes are needed for its
representation.

Concluding this section, we note that the effective number N (ν) of coherent
modes may be used in practice to establish an optimal point for truncating the
modal representation (1.18).

1.6 Coherent-Mode Representations of Some Model Sources

The mode representation of the field considered in Section 1.3 may be applied
without any changes for describing the optical source, which can be a primary
or a secondary one. Furthermore, this representation may be used for many infi-
nite sources. To find the coherent-mode structure of the source, it is necessary to
solve the integral equation (1.19) with the kernel given by the cross-spectral den-
sity W(r1, r2,ν) of the true source distribution (in the case of a primary source)
or the field distribution across the source (in the case of a secondary source). Un-
fortunately, the solutions of this equation in a closed form are obtained at present
only for a very limited number of source models. A brief review of the main known
solutions of the integral equation (1.19) is given below.


