
Chapter 1

Random Functions

The basic filtering problem in signal processing is to operate on an observed
signal to estimate a desired signal. The immediate difficulty is obvious: how to
construct the filter when all one has is the observed signal. One might try some
naïve approach like using a standard low-pass filter, but why should that
produce a good result? The proper formulation of the problem, as laid down
by Norbert Wiener in the 1930s, is to treat the observed and desired signals as
random functions that are jointly probabilistically related, in which case one
can find a filter that produces the best estimate of the desired random signal
based on the observed random signal, where optimality is relative to some
probabilistic error criterion. When an actual signal is observed, the optimal
filter is applied. It makes no sense to enquire about the accuracy of the filter
relative to any single observation, since if we knew the desired signal that led
to the observation, a filter would not be needed. It would be like processing
data in the absence of a criterion beyond the data itself and asking if the
processing is beneficial. This would be a form of pre-scientific radical
empiricism. As put by Hans Reichenbach (Reichenbach, 1971), “If knowl-
edge is to reveal objective relations of physical objects, it must include
reliable predictions. A radical empiricism, therefore, denies the possibility of
knowledge.” Since knowledge is our goal and optimal operator design is our
subject, we begin by defining a random function and considering the basic
properties of such functions, including the calculus of random functions.

A random function, or random process, is a family of random variables
{X(v; t)}, t lying in some index set T, where, for each fixed t, the random
variable X(v; t) is defined on a sample space S (v ∈ S). For a fixed v,X(v; t)
defines a function on the set T, and each of such functions is termed a
realization of the random function. We focus on real-valued functions. If T is
a subset of the real line R, then, for fixed v, X(v; t) is a signal, and the
random function {X(v; t)} is called a random signal, stochastic process, or
random time function. Should a random process be defined only on the
integers, it is sometimes called a random time series. In general, t can be a
point in n-dimensional Euclidean space Rn, so that each realization is a
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deterministic function of n variables. To simplify notation we usually write
X(t) to denote a random function, keeping in mind the underlying probability
structure. In particular, if we fix t and let v vary, then X(t) is a random variable
on the sample space. A specific realization will often be denoted by x(t).

1.1 Moments

For each t, X(t) is a random variable and has a probability distribution func-
tion F(x; t)¼P(X(t)≤ x), called a first-order distribution. For the random

functions that concern us, X(t) will possess a first-order density f ðx; tÞ ¼ dFðx; tÞ
dx ,

where the derivative might involve delta functions.
In practice it is common to index a random function by a random variable

instead of elements in a sample space. Instead of considering the realizations
to be dependent on observations coming from a sample space, it is more
practical to suppose them to be chosen according to observations of a random
variable. Since a random variable Z defined on a probability space induces a
probability measure on the Borel field over the real line R, with the induced
probability measure PZ defined in terms of the original probability measure
P by PZ (B)¼P(Z ∈ B) for any event B, nothing is lost by indexing a random
function by the values of a random variable.

For fixed t, the first-order distribution completely describes the behavior of
the random variable; however, in general, we require the nth-order probability
distributions

Fðx1, x2, : : : , xn; t1, t2, : : : , tnÞ
¼ PðXðt1Þ ≤ x1,Xðt2Þ ≤ x2, : : : ,XðtnÞ ≤ xnÞ

(1.1)

and the corresponding nth-order densities f ðx1, x2, : : : , xn; t1, t2, : : : , tnÞ.
It is possible by integration to obtain the marginal densities from a given

joint density. Hence, each nth-order density specifies the marginals for all subsets
of {t1, t2, : : : , tn}. Now, suppose that we wish to give a complete characterization
of the random function in terms of the various joint densities. If the point set is
infinite, it is not generally possible to completely characterize the random
function by knowing all finite joint densities; however, if the realizations are
sufficiently well behaved, knowledge of the densities of all finite orders com-
pletely characterizes the random function — and we will always make this
assumption. For practical manipulations, it is useful to be able to characterize a
random function by means of the joint densities of some finite order.

If for each point set {t1, t2, : : : , tn} the random variables X(t1), X(t2), . . . ,
X(tn) are independent, then the random function is characterized by its first-order
densities since

f ðx1, x2, : : : , xn; t1, t2, : : : , tnÞ ¼ f ðx1; t1Þf ðx2; t2Þ · · · f ðxn; tnÞ: (1.2)
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An important class of random functions characterized by second-order
distributions is the class of Gaussian random functions. A random function X(t)
is said to be Gaussian, or normal, if for any collection of n points t1, t2, : : : , tn,
the random variables X ðt1Þ,X ðt2Þ, : : : ,X ðtnÞ possess a multivariate Gaussian
distribution. A multivariate Gaussian distribution is completely characterized
by its mean vector and covariance matrix, and these are in turn determined
from the first- and second-order densities of the variables.

A great deal of linear systems theory employs only second-order moment
information. While mathematical tractability is gained, the loss is that there
is no distinction between random functions possessing identical second-
order moments. Linear filters have a natural dependency on second-order
information — and therefore lack discrimination relative to random processes
differing only at higher orders.

The expectation (mean function) of a random function X(t) is the first-order
moment

mX ðtÞ ¼ E½X ðtÞ� ¼
Z

`

�`

xf ðx; tÞdx: (1.3)

Another function depending on X(t) in isolation is the variance function:

Var½X ðtÞ� ¼ E½ðXðtÞ � mX ðtÞÞ2� ¼
Z

`

`

ðx� mX ðtÞÞ2f ðx; tÞdx: (1.4)

For fixed t, Var[X(t)] is the variance of the random variable X(t). The standard
deviation function is defined by sX ðtÞ ¼ Var½XðtÞ�12.

The second-order covariance function of the random function X(t) is
defined by

KX ðt, t0Þ ¼ E½ðX ðtÞ � mX ðtÞÞðXðt0Þ � mX ðt0ÞÞ�

¼
Z

`

�`

Z
`

�`

ðx� mX ðtÞÞðx0 � mX ðt0ÞÞf ðx, x0; t, t0Þdxdx0.
(1.5)

Letting t¼ t0 in the covariance function yields the variance function, KX(t, t)¼
Var[X(t)]. It is seen directly from its definition that the covariance func-
tion is symmetric: KX (t, t0)¼KX (t0, t). The correlation-coefficient function is
defined by

rX ðt, t0Þ ¼
KX ðt, t0Þ

sX ðtÞsX ðt0Þ
: (1.6)

Clearly, |rX(t, t0)|≤ 1.
The autocorrelation function is defined by

RX ðt, t0Þ ¼ E½XðtÞXðt0Þ�: (1.7)

A straightforward calculation yields

KX ðt, t0Þ ¼ RX ðt, t0Þ � mX ðtÞmX ðt0Þ: (1.8)
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If the mean is identically zero, then the covariance and autocorrelation func-
tions are identical.

Given two random functions X(t) and Y(s), the cross-covariance function is
defined as the covariance between pairs of random variables, one from each of
the two processes:

KXY ðt, sÞ ¼ E½ðXðtÞ � mX ðtÞÞðY ðsÞ � mY ðsÞÞ�

¼
Z

`

�`

ðx� mX ðtÞÞðy� mY ðsÞÞf ðx, y; t, sÞdxdy,
(1.9)

where f(x, y; t, s) is the joint density for X(t) and Y(s). If the cross-covariance
function is identically zero, then the random functions are said to be
uncorrelated; otherwise, they are said to be correlated. As with the covari-
ance function, there is symmetry: KXY(t, s)¼KYX(s, t). The cross-correlation
coefficient is defined by

rXY ðt, sÞ ¼
KXY ðt, sÞ
sX ðtÞsY ðsÞ

, (1.10)

and |rXY(t, s)|≤ 1. The cross-correlation function is defined by

RXY ðt, sÞ ¼ E½XðtÞY ðsÞ� (1.11)

and is related to the cross-covariance function by

KXY ðt, sÞ ¼ RXY ðt, sÞ � E½X ðtÞ�E½Y ðsÞ�: (1.12)

Example 1.1. Consider the random time function X(Z; t)¼ I[Z, `) (t), where Z
is the standard normal variable and I[Z,`)(t), the indicator (characteristic)
function for the random infinite interval [Z, `), is defined by I[Z,`) (t)¼ 1
if t∈ [Z,`) and I[Z,`) (t)¼ 0 if t∈= [Z, `). For each observation z of the random
variable Z, X(z; t) is a unit step function with a step at t¼ z. For fixed t, X(t)
is a Bernoulli variable with X(t)¼ 1 if t≥Z and X(t)¼ 0 if t < Z. The density of
X(t) is characterized by the probabilities

PðX ðtÞ ¼ 1Þ ¼ PðZ ≤ tÞ ¼ 1
2p

Z
t

�`

e�z2∕2dz ¼ FðtÞ,

where F denotes the probability distribution function of Z, and

PðX ðtÞ ¼ 0Þ ¼ PðZ . tÞ ¼ 1�FðtÞ:

The mean function for the process X(t) is given by mX(t)¼P(X(t)¼ 1)¼F(t).
To find the covariance for X(t), we first find the autocorrelation RX (t, t0),
recognizing that X(t)X(t0) is a binomial random variable. If t < t0, then
P(t0 ≥Z | t ≥Z)¼ 1, so that
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PðXðtÞX ðt0Þ ¼ 1Þ ¼ Pðt0 ≥ Z, t ≥ ZÞ
¼ Pðt0 ≥ Zjt ≥ ZÞPðt ≥ ZÞ
¼ Pðt ≥ ZÞ
¼ FðtÞ:

A similar calculation shows that, for t0 ≤ t, P(X(t)X(t0)¼ 1)¼F(t0).
Consequently,

PðX ðtÞXðt0Þ ¼ 1Þ ¼ Fðminðt, t0ÞÞ:

Thus, the autocorrelation and covariance are given by

RX ðt, t0Þ ¼ E½X ðtÞX ðt0Þ� ¼ Fðminðt, t0ÞÞ,
KX ðt, t0Þ ¼ E½X ðtÞX ðt0Þ� � mX ðtÞmX ðt0Þ

¼ Fðminðt, t0ÞÞ �FðtÞFðt0Þ:

▪

For a sum, X(t)þY(t), of two random functions, linearity of expectation
yields

maXþbY ðtÞ ¼ amX ðtÞ þ bmY ðtÞ (1.13)

for any real numbers a and b. For the covariance of a sum,

KXþY ðt, t0Þ ¼ E½ðX ðtÞ þ YðtÞÞðX ðt0Þ þ Y ðt0ÞÞ�
� ðmX ðtÞ þ mY ðtÞÞðmX ðt0Þ þ mY ðt0ÞÞ

¼ RX ðt, t0Þ þ RY ðt, t0Þ þ RXY ðt, t0Þ þ RYX ðt, t0Þ
� mX ðtÞmX ðt0Þ � mY ðtÞmY ðt0Þ
� mX ðtÞmY ðt0Þ � mY ðtÞmX ðt0Þ

¼ KX ðt, t0Þ þ KY ðt, t0Þ þ KXY ðt, t0Þ þ KYX ðt, t0Þ,

(1.14)

where we have assumed that the relevant quantities exist. If X(t) and Y(t) are
uncorrelated, then the cross-covariance is identically zero and the preceding
identity reduces to the covariance of the sum being equal to the sum of the
covariances:

KXþY ðt, t0Þ ¼ KX ðt, t0Þ þ KY ðt, t0Þ: (1.15)

The preceding relations generalize to sums of n random functions. Suppose
that
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WðtÞ ¼
Xn
j¼1

XjðtÞ: (1.16)

Then, assuming that the relevant quantities exist,

mW ðtÞ ¼
Xn
j¼1

mXj
ðtÞ, (1.17)

KW ðt, t0Þ ¼
Xn
i¼1

Xn
j¼1

KXiXj
ðt, t0Þ: (1.18)

Should the Xj be mutually uncorrelated, then all terms in the preceding
summation for which i ≠ j are identically zero. Thus, the covariance reduces to

KW ðt, t0Þ ¼
Xn
j¼1

KXj
ðt, t0Þ: (1.19)

1.2 Calculus

Extending the calculus to random functions involves some subtlety because
the difference quotient and Riemann sum defining the derivative and the
integral, respectively, are random variables.

Random-process differentiation is made mathematically rigorous by defining
the derivative of a random process via mean-square convergence. In general,
Xh(t) converges to X(t) in the mean square (MS) if

lim
h→0

E½jXhðtÞ � XðtÞj2� ¼ 0: (1.20)

For fixed h, E [|Xh(t)�X(t)|2] gives the mean-square distance between Xh(t)
and X(t), so that MS convergence means that the distance between Xh(t) and
X(t) is converging to 0.

The random function X(t) is said to be mean-square (MS) differentiable
and X0(t) is the mean-square derivative of X(t) at point t if

lim
h→0

E
�����Xðv; tþ hÞ � X ðv; tÞ

h
� X 0ðv; tÞ

����
2
�
¼ 0: (1.21)

For fixed t and h, both the difference quotient and X 0(v; t) are functions of v
(random variables). The following theorem provides necessary and sufficient
conditions for MS differentiability, and expressions for the mean and covari-
ance functions of the derivative.
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Theorem 1.1. The random function X(t) is MS differentiable on the interval
T if and only if the mean is differentiable on T and the covariance possesses a
second-order mixed partial derivative with respect to u and v on T. In the case
of differentiability,

ðiÞ mX 0 ðtÞ ¼ d
dt

mX ðtÞ, (1.22)

ðiiÞ KX 0 ðu:vÞ ¼ ­2

­u­v
KX ðu, vÞ: (1.23)

▪

The theory of MS differentiability extends to random functions of two
variables: a partial derivative is an ordinary derivative applied to a function of
two variables, with one of the variables being held fixed. The random function
Y ðv; u, vÞ is the MS partial derivative of the random function X(v; u, v) with
respect to the variable u if

lim
h→0

E
�����X ðv; uþ h, vÞ � Xðv; u, vÞ

h
� Yðv; u, vÞ

����
2
�
¼ 0: (1.24)

A two-dimensional analogue of Theorem 1.1 holds.
In ordinary calculus the integral of the time function x(t) is defined as a

limit of Riemann sums: for any partition a ¼ t0 , t1 , t2 , · · · , tn ¼ b of
the interval [a, b],

Z
b

a
xðtÞdt ¼ lim

kDtkk→0

Xn
k¼1

xðt0kÞDtk, (1.25)

where Dtk¼ tk� tk�1, ‖Dtk‖ is the maximum of the Dtk over k ¼ 1, 2, : : : , n, tk0 is
any point in the interval [tk�1, tk], and the limit is taken to mean that the same
value is obtained over all partitions, as long as ‖Dtk‖→ 0. The limit is, by
definition, the value of the integral. The variable t is not restricted to a single
dimension.

For a region of integration T ⊂R, consider a disjoint collection of
intervals Ik forming a partition Ξ¼ {Ik} of T, meaning that T¼∪kIk. For each
v, we can form the Riemann sum corresponding to the realization of the
random function X(v; t) and the partition Ξ in a manner analogous to a
deterministic function:

SX ðv;ΞÞ ¼
Xn
k¼1

X ðv; t0kÞDðIkÞ, (1.26)

where t0k∈ Ik. Letting ‖Ik‖ be the maximum of the lengths, the limit can be
taken over all partitions for which ‖Ik‖→ 0 to give the integral
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Z
T
X ðv; tÞdt ¼ lim

Ξ, kIkk→0
SX ðv;ΞÞ: (1.27)

Since the sum on the right-hand side of Eq. 1.26 depends not only on the
partition, but also on the realization (on v), the limit of Eq. 1.27 is a limit of
random variables.

A random function X(v; t) is said to bemean-square integrable and possess
integral

R
T Xðv; tÞdt, itself a random variable, if and only if

lim
Ξ, kIkk→0

E½jI � SX ðv,ΞÞj2� ¼ 0, (1.28)

where the limit is taken over all partitions Ξ¼ {Ik} for which ‖Ik‖→ 0.
The integral of a random function can often be obtained by integration of
realizations; however, MS integrability depends on the limit of Eq. 1.28.

The basic mean-square integrability theorem concerns integrands of the
form g(t, s)X(s), where g(t, s) is a deterministic function of two variables. The
resulting integral is a random function of t and is not dependent on dimension.

Theorem 1.2. If the integral

Y ðtÞ ¼
Z
T
gðt, sÞXðsÞds (1.29)

exists in the MS sense, then

ðiÞ mY ðtÞ ¼
Z
T
gðt, sÞmX ðsÞds, (1.30)

ðiiÞ KY ðt, t0Þ ¼
Z
T

Z
T
gðt, sÞgðt0, s0ÞKX ðs, s0Þdsds0: (1.31)

Conversely, if the deterministic integrals in (i) and (ii) exist, then the integral
defining Y(t) exists in the MS sense. ▪

Writing out (i) and (ii) in terms of the definitions of the mean and
covariance shows that they state that integration and expectation can be
interchanged. According to the theorem, these interchanges are justified if and
only if there is MS integrability.

If we let g(t, s) be a function of only s in Eq. 1.29, then the stochastic
integral is just a random variable Y and Eq. 1.31 gives the variance of Y. Since
the variance is nonnegative, the integral is nonnegative:

Z
T

Z
T
KX ðs, s0ÞgðsÞgðs0Þdsds0 ≥ 0: (1.32)

The inequality holds for any domain T and any function gðsÞ for which the
integral exists. A function of two variables for which this is true is said to be
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nonnegative definite. The requirement of nonnegative definiteness for a covari-
ance function constrains the class of symmetric functions that can serve as
covariance functions.

1.3 Three Fundamental Processes

This section discusses three random functions that are very important in
applications and theory. All involve generalized functions.

1.3.1 Poisson process

The one-dimensional Poisson model is mathematically described in terms of
points arriving randomly in time and letting X(t) count the number of points
arriving in the interval [0, t]. Three assumptions are postulated:

(i) The numbers of arrivals in any finite set of non-overlapping intervals
are independent.

(ii) The probability of exactly one arrival in an interval of length t is
ltþ o(t).

(iii) The probability of two or more arrivals in an interval of length t is o(t).

The parameter l is constant over all t intervals, and o(t) represents any function
g(t) for which limt→0 g(t)/t¼ 0. Condition (ii) says that, for infinitesimal t, the
probability of exactly one arrival in an interval of length t is lt plus a quantity
very small in comparison to t, and condition (iii) says that, for infinitesimal t, the
probability of two or more arrivals in an interval of length t is very small in
comparison to t. The random time points are called Poisson points, and each
realization of the Poisson process corresponds to a set of time points result-
ing from a particular observation of the arrival process. It can be proven that
X(t) possesses a Poisson density with mean and variance equal to lt, namely,

PðXðtÞ ¼ kÞ ¼ e�lt ðltÞk
k!

(1.33)

for k ¼ 0, 1, 2, : : : .
It follows from assumption (i) that the Poisson process has indepen-

dent increments: if t < t0 < u < u0, then X(u0)�X(u) and X(t0)�X(t) are
independent. Using this independence, we find the covariance function.
If t < t0, then the autocorrelation is obtained as

E½X ðtÞX ðt0Þ� ¼ E½X ðtÞ2 þ X ðtÞðX ðt0Þ � X ðtÞÞ�
¼ E½X ðtÞ2� � E½XðtÞ�2 þ E½XðtÞ�E½X ðt0Þ�
¼ Var½X ðtÞ� þ E½X ðtÞ�E½X ðt0Þ�
¼ ltþ l2tt0:

(1.34)

Hence, for t < t0,
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KX ðt, t0Þ ¼ Var½XðtÞ� ¼ lt: (1.35)

Interchanging the roles of t and t0 yields

KX ðt, t0Þ ¼ Var½X ðminðt, t0ÞÞ� ¼ lminðt, t0Þ (1.36)

for all t and t0.
Theorem 1.1 states that MS differentiability depends on existence of

the mixed partial derivative ∂2KX(u, v)/∂u∂v. The Poisson process is not MS
differentiable, but its covariance function possesses the generalized mixed
partial derivative

­2KX ðt, t0Þ
­t­t0

¼ ldðt� t0Þ: (1.37)

Although we have defined differentiability in terms of MS convergence, it is
possible to give meaning to a generalized differentiability for which differentia-
bility of the process is related to the generalized mixed partial derivative of the
covariance and the derivative of the mean; that is, Theorem 1.1 can be applied
in a generalized sense.

If a random process has covariance function ld(t� t0) and constant mean
l (which is the derivative of the mean of the Poisson process), then we refer to
the process as the generalized derivative of the Poisson process. Proceeding
heuristically, the Poisson process has step-function realizations, where steps
occur at points in time randomly selected according to a Poisson density with
parameter l. For any realization, say x(t), with steps at t1, t2, : : : , the usual
generalized derivative is given by

x0ðtÞ ¼
X̀
k¼1

dðt� tkÞ: (1.38)

If we assume that the derivative of the Poisson process consists of the process
whose realizations agree with the derivatives of the realizations of the Poisson
process itself, then the derivative process is given by

X 0ðtÞ ¼
X̀
k¼1

dðt� ZkÞ, (1.39)

where the Zk form a sequence of random Poisson points.
Since each realization of X0(t) consists of a train of pulses, the process

is called the Poisson impulse process. If we now apply the generalized form
of Theorem 1.1 that was alluded to previously, given that the mean and
covariance of the Poisson process are lt and lmin(t, t0), respectively, we
conclude that the mean and covariance of the Poisson impulse process are
given by mX0(t)¼ l and KX0(t, t0)¼ ld(t� t0).
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The Poisson process is generated by random Poisson points, which are
often said to model complete randomness, meaning that intuitively they
model a “uniform” distribution of points across the infinite interval [0, `). For
application, a basic proposition states that the time distribution governing the
arrival of the kth Poisson point following a given Poisson point is governed
by a gamma distribution with a¼ k and b¼ 1/l (lt being the mean of the
Poisson process). In particular, for k¼ 1, the inter-arrival time is governed by
an exponential distribution with mean 1/l.

Up to this point we have based our discussion of the Poisson process on the
conditions defining a Poisson arrival process, a key consequence being that the
process possesses independent increments. In general, a randomprocessX(t), t≥ 0,
is said to have independent increments if X(0)¼ 0 and, for any t1, t2, · · ·, tn,
the random variables X ðt2Þ � Xðt1Þ,X ðt3Þ � X ðt2Þ, : : : ,X ðtnÞ � Xðtn�1Þ
are independent. The process has stationary independent increments if
X(tþ r)�X(t0 þ r) is identically distributed to X(t)�X(t0) for any t, t0, and r.
When the increments are stationary, the increment distribution depends only
on the length of time, t� t0, not the specific points in time, tþ r and t0 þ r. As
defined via the arrival model, the Poisson process has stationary independent
increments.

Axiomatically, we define a process X(t) to be a Poisson process with mean
rate l if

P1. X(t) has values in {0, 1, 2, . . .}.
P2. X(t) has stationary independent increments.
P3. For s< t, X(t)�X(s) has a Poisson distribution with mean l(t� s).

The axiomatic formulation P1 through P3 completely captures the arrival
model.

By generalizing the axioms P1 through P3, we can arrive at a definition of
Poisson points in space. Consider points randomly distributed in Euclidean
space Rn and let N(D) denote the number of points in a domain D. The points
are said to be distributed in accordance with a Poisson process with mean rate l if

1. For any disjoint domains D1,D2, : : : ,Dr, the counts NðD1Þ,NðD2Þ, : : : ,
NðDrÞ are independent random variables.

2. For any domain D of finite volume, N(D) possesses a Poisson distribu-
tion with mean lv(D), where v(D) denotes the volume (measure) of D.

1.3.2 White noise

A zero-mean random function X(k) defined on a discrete domain (taken to be the
positive integers) is called discrete white noise if X(k) and X(j) are uncorrelated for
k ≠ j. If X(k) is discrete white noise, then its covariance is given by

KX ðk, jÞ ¼ E½X ðkÞX ðjÞ� ¼ Var½XðkÞ�dkj, (1.40)
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where dk j¼ 1 if k¼ j, and dk j¼ 0 if k ≠ j. For any function g defined on the
integers and for all k,

X̀
i¼1

KX ðk, iÞgðiÞ ¼ Var½X ðkÞ�gðkÞ: (1.41)

If there were a similar process in the continuous setting and X(t) were such
a random function defined over domain T, then the preceding equation would
take the form Z

T
KX ðt, t0Þgðt0Þdt0 ¼ IðtÞgðtÞ, (1.42)

where I(t) is a function of t that plays the role played by Var[X(k)] in Eq. 1.41.
If we set

KX ðt, t0Þ ¼ IðtÞdðt� t0Þ, (1.43)

then we obtain Eq. 1.42. Hence, any zero-mean random function having a
covariance of the form I(t)d(t� t0) is called continuous white noise. White noise
plays key roles in canonical representation, noise modeling, and design of
optimal filters.

Continuous white noise does not exist from a standard mathematical
perspective and requires generalized functions for a rigorous definition.
We shall manipulate white noise formally under the assumption that the
manipulations are justified in the context of generalized functions. It follows
from the covariance function I(t)d(t� t0) that continuous white noise processes
have infinite variance (set t¼ t0) and uncorrelated variables. I(t) is called the
intensity of the white noise process.

For an approximation of continuous white noise in one dimension, there
exists a normal, zero-mean, stochastic process X(t) having covariance func-
tion KX(t, t0)¼ e–b|t–t

0|, for b>0. For very large values of b, this covariance
function behaves approximately like the covariance of white noise.

1.3.3 Wiener process

Suppose that a particle, starting at the origin (in R) moves a unit length to the
right or left. Movements are taken independently, and for each movement the
probabilities of going right or left are p and q¼ 1� p, respectively. Let X(n)
be the number of units the particle has moved to the right after n movements.
X(n) is called the one-dimensional random walk. The range of X(n) is the set of
integers f�n, �nþ 2, : : : , n� 2, ng.

To find the density for X(n), let Y be the binomial random variable for
n trials with probability p of success. For X(n)¼ x, there must be (nþ x)/2
movements to the right and (n� x)/2 movements to the left. Hence, X(n)¼ x
if and only if Y¼ (nþ x)/2. Hence,
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f XðnÞðxÞ ¼ P
�
Y ¼ nþ x

2

�
¼

�
n

nþx
2

�
pðnþxÞ∕2qðn�xÞ∕2: (1.44)

Owing to the relationship between X(n) and Y, the moments of X(n)
can be evaluated in terms of moments of Y¼ (nþX(n))/2. Specifically,
X(n)¼ 2Y� n and

E½X ðnÞm� ¼
Xn
y¼0

ð2y� nÞmPðY ¼ yÞ: (1.45)

Since Y is binomial, E [Y ]¼ np, and E [Y2]¼ npqþ n2p2. Letting m¼ 1 and
m¼ 2 yields

E½XðnÞ� ¼ 2np� n, (1.46)

E½X ðnÞ2� ¼ 4ðnpqþ n2p2Þ þ ð1� 4pÞn2: (1.47)

When movements to the right and left are equiprobable, so that p ¼ q ¼ 1
2,

E [X(n)]¼ 0 and Var[X(n)]¼E [X(n)2]¼ n. Since the process has stationary
independent increments, the covariance argument applied to the Poisson
process also applies here. Thus,

KX ðn, n0Þ ¼ Var½X ðminðn, n0ÞÞ� ¼ minðn, n0Þ: (1.48)

In the random-walk analysis the time interval between movements is 1;
however, the analysis can be adapted to any finite time interval. Moreover,
instead of restricting the motion to a single dimension, it could be analyzed
in two dimensions, where the random walker can choose between four
directions: left, right, up, and down. Taking a limiting situation, one can
imagine an infinitesimal particle being continually acted upon by forces from
its environment. The motion of such a particle can appear spasmodic, and
under suitable phenomenological conditions such motion is referred to as
Brownian motion.

Suppose that a particle is experiencing Brownian motion and X(t) is its
displacement in a single dimension from its original initial position. Assuming
the particle’s motion results from a multitude of molecular impacts lacking
regularity, it is reasonable to suppose that X(t) has independent increments.
Moreover, assuming that the nature of the particle, the medium, and the
relationship between the particle and its medium remain stable, and that the
displacement over any time interval depends only on the elapsed time, not on
the moment the time period commences, it is reasonable to postulate
stationarity of the increments. Next, suppose that for any fixed t, X(t) is
normally distributed with mean zero, the latter reflecting forces acting on the
particle without directional bias.
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In accordance with the foregoing considerations, a Wiener process X(t),
t ≥ 0, is defined to be a random function satisfying the following conditions:

1. X(0)¼ 0.
2. X(t) has stationary independent increments.
3. E [X(t)]¼ 0.
4. For any fixed t, X(t) is normally distributed.

Based on these conditions, one can verify that, for 0≤ t0 < t, the
increment X(t)�X(t0) has mean zero and variance s2|t� t0|, where s2 is a
parameter to be empirically determined. In particular, Var[X(t)]¼s2t for
t ≥ 0. As for the covariance, based on independent increments, the same
argument used for the random walk process can be applied to obtain

KX ðt, t0Þ ¼ Var½X ðminðt, t0ÞÞ� ¼ s2 minðt, t0Þ: (1.49)

Up to a multiplicative constant, the Poisson and Wiener processes have
the same covariance. If we take the generalized mixed partial derivative of the
Wiener process covariance, we obtain, as in the Poisson case, a constant times
a delta function:

­2KX ðt, t0Þ
­t­t0

¼ s2dðt� t0Þ: (1.50)

Since mX(t)≡ 0, dmX(t)/dt≡ 0. Consequently, via the generalized version of
Theorem 1.1, KX0(t, t0)¼s2d(t� t0), and the derivative of the Wiener process
is white noise.

1.4 Stationarity

In general, the nth-order probability distributions of a random function at two
different sets of time points need not have any particular relation to each
other. This section discusses two situations in which they do. First, the
covariance function of a random process X(t) is generally a function of two
variables; however, in some cases it is a function of the difference between the
variables. A stronger relation occurs when the nth-order probability
distribution itself is invariant under a translation of the time point set.

If the covariance function of the random function X(t) can be written as

KX ðt, t0Þ ¼ kX ðtÞ, (1.51)

where t¼ t� t0 (scalar or vector) and X(t) has a constant mean mX, then X(t) is
said to be wide-sense (WS) stationary. Its variance function is constant:

Var½X ðtÞ� ¼ KX ðt, tÞ ¼ kX ðt� tÞ ¼ kX ð0Þ: (1.52)

14 Chapter 1



Owing to the symmetry of KX(t, t0), the covariance function of X(t) is an even
function,

kX ð�tÞ ¼ kX ðt0 � tÞ ¼ kX ðt� t0Þ ¼ kX ðtÞ: (1.53)

Hence, kX (t)¼ kX (|t|). The correlation coefficient reduces to a function of t:

rX ðtÞ ¼
kX ðtÞ
kX ð0Þ

: (1.54)

Since |rX(t)|≤ 1, |kX(t)|≤ kX (0). The autocorrelation is also a function of t:

RX ðt, t0Þ ¼ kX ðtÞ þ m2
X ¼ rX ðtÞ: (1.55)

A random function X(t) is WS stationary if and only if its covariance
function is translation invariant, which means that, for any increment h,

KX ðtþ h, t0 þ hÞ ¼ KX ðt, t0Þ: (1.56)

To see this, suppose that X(t) is WS stationary. Then

KX ðtþ h, t0 þ hÞ ¼ kX ðtþ h� ðt0 þ hÞÞ ¼ kX ðt� t0Þ ¼ KX ðt, t0Þ: (1.57)

Conversely, if the covariance function is translation invariant, then

KX ðt, t0Þ ¼ KX ðt� t0, t0 � t0Þ ¼ KX ðt� t0, 0Þ, (1.58)

which is a function of t� t0.

Example 1.2. Let Y(t) be the Poisson process with mean lt and r be a positive
constant. The Poisson increment process is defined by

X ðtÞ ¼ Y ðtþ rÞ � Y ðtÞ:

According to the Poisson model, X(t) counts the number of points in
[t, tþ r], and

mX ðtÞ ¼ E½Y ðtþ rÞ� � E½YðtÞ� ¼ lr:

For the covariance KX(t, t0), there are two cases: |t� t0| > r and |t� t0|≤ r.
If |t� t0| > r, then the intervals determined by t and t0 are nonoverlapping and,
owing to independent increments, X(t) and X(t0) are independent, and their
covariance is 0. Suppose that |t� t0|≤ r. First consider the case where t< t0.
Then t< t0 < tþ r< t0 þ r, and we can apply the result of Eq. 1.34 together with
the observation that, because the process counts the number of points in
[t, tþ r], its mean is lr. Thus,

15Random Functions



KX ðt, t0Þ ¼ E½ðY ðt0 þ rÞ � Y ðt0ÞÞðY ðtþ rÞ � Y ðtÞÞ� � E½X ðt0Þ�E½XðtÞ�
¼ E½Yðt0 þ rÞY ðtþ rÞ� � E½Y ðt0 þ rÞY ðtÞ� � E½Y ðtþ rÞY ðt0Þ�
þ E½Y ðt0ÞY ðtÞ� � l2r2

¼ lðtþ rÞ þ l2ðt0 þ rÞðtþ rÞ � lt� l2tðt0 þ rÞ � lt0

� l2t0ðtþ rÞ þ ltþ l2tt0 � l2r2

¼ l½r� ðt0 � tÞ�:
Owing to symmetry, interchanging the roles of t and t0 (t0 ≤ t) yields

KX ðt, t0Þ ¼ lðr� jt� t0jÞ
when |t� t0|≤ r. Hence, X(t) is WS stationary with

kX ðtÞ ¼
�
lðr� jtjÞ, if jtj ≤ r
0, if jtj . r

: ▪

A stronger form of stationarity concerns higher-order probabilistic
information. The random function X(t) is said to be strict-sense stationary
(SS stationary) if, for any points t1, t2, : : : , tn, and for any increment h, its nth-
order distribution function satisfies the relation

Fðx1, x2, : : : , xn; t1 þ h, t2 þ h, : : : , tn þ hÞ ¼ Fðx1, x2, : : : , xn; t1, t2, : : : , tnÞ: (1.59)

In terms of the nth-order density,

f ðx1, x2, : : : , xn; t1 þ h, t2 þ h, : : : , tn þ hÞ ¼ f ðx1, x2, : : : , xn; t1, t2, : : : , tnÞ: (1.60)

Given any finite set of random variables from the random function, a spatial
translation of each by a constant h results in a collection of random variables
whose multivariate distribution is identical to that of the original collection.
From a probabilistic perspective, the new collection is indistinguishable from
the first. If we define the random vector

Xðt1, t2, : : : , tnÞ ¼

0
BBB@

X ðt1Þ
X ðt2Þ

..

.

X ðtnÞ

1
CCCA, (1.61)

then Xðt1 þ h, t2 þ h, : : : , tn þ hÞ is identically distributed to Xðt1, t2, : : : , tnÞ.
If we restrict Eq. 1.59 to a single point, then it becomes F(x; tþ h)¼F(x; t).

X(tþ h) is identically distributed to X(t), and therefore the mean at tþ h must
equal the mean at t for all h, which implies that the mean must be constant.
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Now consider two points such that

Fðx1, x2; t1 þ h, t2 þ hÞ ¼ Fðx1, x2; t1, t2Þ: (1.62)

X(t1þ h, t2þ h) is identically distributed to X(t1, t2). Hence,

KX ðt1 þ h, t2 þ hÞ ¼ KX ðt1, t2Þ: (1.63)

Therefore, the covariance function is translation invariant, and X(t) is WS
stationary. In summary, SS stationarity implies WS stationarity.

For a Gaussian random function, SS and WS stationarity are equivalent:
since a Gaussian process is completely described by its first- and second-order
moments and these are translation invariant for a WS stationary process, the
higher-order probability distribution functions must also be translation
invariant.

1.5 Linear Systems

IfC is a linear operator on a class of random functions, then, by superposition,

Cða1X 1 þ a2X 2Þ ¼ a1CðX 1Þ þ a2CðX 2Þ: (1.64)

For Y¼C(X), we desire mY (s) and KY(s, s0) in terms of mX(t) and KX(t, t0),
respectively. Schematically, we would like to find operations to complete
(on the bottom horizontal arrows) the following commutative diagrams
involving the expectation and covariance:

We have considered the cases where the operators are differentiation and
integration in Theorems 1.1 and 1.2, respectively, a key point being inter-
change of the linear operator and the expectation, E [C(X)]¼C[E(X)].
In terms of the relation Y(s)¼C(X)(s), the interchange can be written as
mY(s)¼C(mX)(s), and thus commutativity is achieved in the diagram of
Eq. 1.65 with C on the bottom arrow. Although interchange of expectation
and a linear operator is not always valid, it is valid in practical situations, and
henceforth we assume conditions to be such that it is justified.
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For the moment, let us focus on linear systems operating on deterministic
functions, in particular, integral operators defined in terms of a weighting
function g(s, t) via

yðsÞ ¼
Z
T
gðs, tÞxðtÞdt, (1.67)

where x(t) belongs to some linear space of functions and the variables can be
scalars or vectors. Whereas x(t) is defined over T, the output function y(s) is
defined over some set of values s ∈ S, where S need not equal T.

In the discrete sense,

yðnÞ ¼
X̀
k¼�`

gðn, kÞxðkÞ ¼
Z

`

�`

gðn, tÞxðtÞdt, (1.68)

where

xðtÞ ¼
X̀
k¼�`

xðkÞdðt� kÞ: (1.69)

If C is a linear operator on a linear function space L, the functions
x1ðtÞ, x2ðtÞ, : : : , xnðtÞ lie in L,

xðtÞ ¼
Xn
k¼1

akxkðtÞ, (1.70)

and y(s)¼C(x)(s), then

yðsÞ ¼
Xn
k¼1

akykðsÞ, (1.71)

where yk(s)¼C(xk)(s) for k ¼ 1, 2, : : : , n. Superposition applies to finite sums
of input functions; should a sum be infinite, and even converge, interchanging
summation with the operator may not be valid, or, to achieve validity, the
procedure might have to be interpreted in some specialized sense. When the
functions involved are “well-behaved,” such interchange can often take place.

More generally, if a function x(t) is represented as an integral,

xðtÞ ¼
Z
U
aðuÞQðt, uÞdu, (1.72)

andC is a linear operator such that for each fixed u, Q(t, u) is in the domain of
C, can we interchange the order of integration and application of C and write

yðsÞ ¼ CðxÞðsÞ ¼
Z
U
aðuÞ½CtðQðt, uÞÞ�ðsÞdu, (1.73)
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where the subscript t of Ct denotes that C is applied relative to the variable t
(for fixed u)? Validity depends on the function class involved. Two points are
germane: (1) conditions can be imposed on the function class to make the
interchange valid; (2) interchange facilitates the use of weighting functions to
represent linear system laws, and the suggestiveness of such representations
makes interchange of laws and integrals, at least in a formal manner,
invaluable. Consequently, we will apply superposition freely to functions
defined in terms of weighting functions, recognizing that for finite sums (or for
weighting functions that are finite sums of delta functions), the application is
mathematically rigorous.

If C and x(t) are defined by Eqs. 1.67 and 1.72, respectively, then, by
superposition,

yðsÞ ¼
Z
T

Z
U
gðs, tÞaðuÞQðt, uÞdudt

¼
Z
U
aðuÞ

�Z
T
gðs, tÞQðt, uÞdt

�
du:

(1.74)

Combining this with Eq. 1.73 shows that

CtQðt, uÞðsÞ ¼
Z
T
gðs, tÞQðt, uÞdt: (1.75)

Consider representation of a function via an integral with a delta function
kernel:

xðtÞ ¼
Z

`

�`

xðuÞdðt� uÞdu, (1.76)

where, for notational convenience only, we have employed functions of a
single variable. Application of C to x(t) yields the output

yðsÞ ¼
Z

`

�`

xðuÞCtdðt� uÞðsÞdu: (1.77)

For random-function inputs, an operator defining the bottom arrow in the
commuting diagram of Eq. 1.66 provides a formulation of the output
covariance of a linear system in terms of the input covariance. To avoid
cumbersome notation, two conventions will be adopted. First, equations may
be shortened by not including the variable s subsequent to the operation.
Although this practice will result in equations with the variable s on the left
and no explicitly stated variable s on the right, no confusion should result if
one keeps the meaning of the operations in mind. A second convention will be
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omission of parentheses when the meaning of the operations is obvious. For
instance, we may write CX instead of C(X).

For the centered random functions X0 and Y0, the identity EC¼CE yields

Y 0ðsÞ ¼ YðsÞ � mY ðsÞ
¼ C½X ðtÞ � mX ðtÞ�ðsÞ
¼ C½X 0ðtÞ�ðsÞ:

(1.78)

Consequently,

KY ðs, s0Þ ¼ E½Y 0ðsÞY 0ðs0Þ�
¼ E½CtX 0ðtÞCt0X 0ðt0Þ�
¼ E½CtCt0X 0ðtÞX 0ðt0Þ�
¼ CtCt0E½X 0ðtÞX 0ðt0Þ�
¼ CtCt0KX ðt, t0Þ:

(1.79)

Since the roles of Ct and Ct0 can be interchanged, we obtain the next theorem,
completing the commuting diagram of Eq. 1.66. The same technique applies
to the autocorrelation.

Theorem 1.3. If X(t) is a random function for which CEX¼ECX, then

ðiÞ mCX ðsÞ ¼ CðmX ðtÞÞ, (1.80)

ðiiÞ KCX ðs, s0Þ ¼ CtCt0KX ðt, t0Þ ¼ Ct0CtKX ðt, t0Þ: (1.81)

▪

If g(t, u) is the impulse response function for C, and we let Y¼CX, then

Y ðtÞ ¼
Z

`

�`

gðt, uÞXðuÞdu, (1.82)

and the conclusions of Theorem 1.3 can be rewritten as

ði0Þ mY ðtÞ ¼
Z

`

�`

gðt, uÞmX ðuÞdu, (1.83)

ðii0Þ KY ðt, t0Þ ¼
Z

`

�`

Z
`

�`

gðt, uÞgðt0, u0ÞKX ðu, u0Þdudu0: (1.84)

Letting t¼ t0 yields the output variance:

Var½Y ðtÞ� ¼
Z

`

�`

Z
`

�`

gðt, uÞgðt, u0ÞKX ðu, u0Þdudu0: (1.85)
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By letting C be the differential operator and recognizing that Ct and Ct0

are partial derivatives with respect to t and t0 for the differential operator,
if s¼ t, then it follows from Eq. 1.81 that

KCX ðt, t0Þ ¼
­­

­t0­t
KX ðt, t0Þ: (1.86)

This relation holds for generalized derivatives involving delta functions.
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