
Chapter 1

Stress and Strain

1.1 Introduction

The opto-structural analyst is concerned with stress and deflection from
externally applied loads, such as those occurring during mounting of optics, and
internal loads, such as those initiated by gravity or acceleration. Additionally,
the analyst is concerned with temperature change, which causes deflection and
often causes stress. For cryogenic and high-temperature extremes, such values
are obviously crucial; for more benign environments, temperature, loads, and
self-weight deflection are still an issue, since we are concerned with fractional-
wavelength-of-light changes. Accordingly, this initial chapter provides the
basics of structural analysis, which lay the foundation for the chapters to follow.

1.2 Hooke’s Law

Before diving into the structural analysis methods required for high-acuity
optical systems, it is useful to review the origins of this analysis. While basic
and advanced theories and principles of strength of materials and structural
analysis have filled volumes, we review here the basis on which everything
else follows. We review, therefore, the simple relation developed by Robert
Hooke1 in 1660, when he wrote ut tensio sic vis,2 which literally means, “as the
extension, so the force.” This expression simply states that force, or load, is
directly proportional to deflection for any system that can be treated as a
mechanical spring, including elastic bodies, as long as such deflection is small.
Simply stated,

F ¼ kx, (1.1)

where F is the applied force, x is the resulting deflection, and k is a spring, or
stiffness, constant. In this theory, the spring is fully restored to its original
length upon removal of the load.

A logical extension to Hooke’s law relates stress to strain in a similar
fashion. Consider a bar of length L and a cross-sectional area A under an axial
load P, as shown in Fig. 1.1. Here, we define stress s as
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s ¼ P
A
: (1.2)

Note that this is simply a definition; stress has the units of force divided by
area [MN/m2 (MPa)], or pounds per square inch (psi).

The load in Fig. 1.1 and the resulting stress are considered to be tensile
when the object is stretched and are compressive when it is shortened. Tensile
and compressive stresses are called direct stresses and act normal to the cross-
sectional surface.

Since stress is directly proportional to force divided by area, and strain ε
(a dimensionless quantity) is related to deflection as

ε ¼ x
L
, (1.3)

we can now rewrite Hooke’s law as

s ¼ Eε, (1.4)

where E is a material stiffness constant; for a solid isotropic material under
a unidirectional axial load, E is an inherent property of the material, called
its modulus of elasticity, and often referred to as elastic modulus, tensile
modulus, or Young’s modulus. The modulus of elasticity has the same units as
stress (psi) since strain is dimensionless.

Substituting Eq. (1.4) into Eq. (1.2), we now readily compute the axial
deflection of the bar of Fig. 1.1 as

x ¼ PL
AE

: (1.5)

While this formulation is quite simplified, computation of stress for 3D solids
with loads in multiple directions will be more complex. To illustrate this, and
for the sake of completeness, while force is a vector (it has magnitude and
direction), i.e., a first-order tensor, stress is a second-order tensor, which is a
multidirectional quantity, and follows a different set of rules than the simple
laws of vector addition. Further, for anisotropic materials, the stiffness matrix
relating stress to strain will, in general, consist of a fourth-order tensor and
21 independent terms, with Hooke’s law taking the form of

Figure 1.1 Direct tension force application to a one-dimensional (1D) element. Stress is
defined as force divided by area and acts normal to the surface of the cross-section.
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sij ¼
X3
k¼1

X3
i¼1

Eijklεkl, (1.6)

where subscripts i, j take on values of 1, 2, or 3. Fortunately, in this text, we
will not make use of such advanced analyses and will need only to discuss
stress and strain in two dimensions, enabling more simplified, yet accurate,
analyses. In the case of isotropic loading of 3D solids, the stiffness matrix is
reduced to only two quantities, E and G, the latter of which is defined as the
shear modulus, or modulus of rigidity. The shear modulus G is related to the
elastic modulus E as

G ¼ E
2ð1þ nÞ , (1.7)

where n is the ratio of lateral contraction to axial elongation under axial load
and varies between 0 and 0.5 for most common materials. Values of zero are
common for cork, for example, and values near 0.5 are common for rubbers,
which are essentially incompressible. Another way of saying this is that for a
material such as rubber, its volume will be constant under load, while its
volume is ever increasing as Poisson’s ratio is lowered toward zero.
(Theoretical values of Poisson’s ratio can be as low as �1, as achieved in
certain materials, and are well beyond the scope of this text).

In two dimensions,

Ex ¼
ðsx � nsyÞ

E
, (1.7a)

Ey ¼
ðsy � nsxÞ

E
: (1.7b)

Thus, for the purposes of this text, these equations are most useful and
preclude the need for unwieldy, 3D constituency matrices. The introduction of
the 2D effect gives rise to the additional form of Hooke’s law relating to shear
stress t, given as

t ¼ Gl, (1.8)

where l is the (dimensionless) shear strain angle.
Shear stresses act in the plane of the cross-sectional surface. For shear

load force V, as depicted in Fig. 1.2, we find the average shear stress as

t ¼ V
A
: (1.9)
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Substituting Eq. (1.8) into Eq. (1.9), we now readily compute the shear
deflection (ignoring beam bending for the moment) of the bar of Fig. 1.2 as

y ¼ VL
AG

: (1.10)

1.3 Beyond Tension, Compression, and Shear

Thus far, we have applied Hooke’s law in the three translational directions:
axial (x, tension/compression) and lateral (y, z, shear). There are also three
rotational directions upon which bending and twist moments may act,
completing the six possible degrees of freedom. Bending occurs when a
moment is applied about either of the orthogonal lateral (y, z) axes, while
twisting occurs when a moment [in units of inch-pounds (in.-lb)] is applied
about the axial (x) axis. Figure 1.3 depicts these additional degrees of
freedom. Again, in these cases, we can use Hooke’s law to determine stresses
and strains, and, therefore, deformation.

1.3.1 Bending stress

It is worthwhile to illustrate Hooke’s law for the case of bending. Consider a
beam under pure bending (constant, uniform moment), as shown in Fig. 1.4.

Figure 1.2 Direct shear force application without bending to a 1D element. Stress is
defined as force divided by area and acts in the plane of the surface cross-section.

Figure 1.3 1D beam element under bending (about the z and y axes) and twist moments
(about the x axis) in rotational degrees of freedom. Bending produces normal stress, while
twist produces shear stress.
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The top (concave) surface is shortened, and the bottom (convex) surface is
elongated. Somewhere in the middle there is no length change; this is the
neutral axis of the beam. Since adjacent planes rotate by an amount du, the
arc length s at the neutral surface is given as

s ¼ dx ¼ Rdu, (1.11)

where R is the radius of curvature of the beam.
Away from the neutral surface, the beam fibers elongate or shorten by an

amount ydu, and since the original fiber length was dx, the strain is given
simply as

ε ¼ � ydu
dx

¼ � y
R
, (1.12)

where a positive sign indicates tension, and a negative sign indicates
compression. We can now apply Hooke’s law (Eq. 1.4) and readily compute

s ¼ Ey
R

: (1.13)

These stresses acting over the elemental area give rise to forces that
produce the resultant moment. Since there is no net force, from equilibrium it
is realized that

E
R

Z
ydA ¼ 0, (1.14)

Figure 1.4 Diagram of bending stress showing section curves with radius R under moment
loading. Surface a–a shortens, while surface b–b lengthens relative to neutral surface c–c.
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which implies that the neutral axis is at the centroid of the cross-section. The
net moment M is the sum of the force distance products, or

M ¼
Z

ysdA ¼ E
R

Z
y2dA, (1.15)

where the integral is called the area moment of inertia I of the cross-section,
with dimensions of length to the fourth power. Thus, we have

1
R

¼ M
EI

, (1.16)

and substitution of Eq. (1.16) into Hooke’s law [Eq. (1.13)] yields

s ¼ My
I

: (1.17)

The largest value occurs as either tension or compression at the extreme
fibers. Denoting the extreme fiber position as y ¼ c, the maximum stress is

s ¼ Mc
I

: (1.18)

1.3.1.1 Combined normal stress

If a tensile or compressive axial load exists with a moment load, Eq. (1.18) is
added to Eq. (1.2) (normal stresses acting in the same direction can be added):

s ¼ P
A
þMc

I
: (1.19)

It has been said that this equation is 90% of structural engineering; this is
an obvious exaggeration, but the equation is, arguably, one of the most
commonly used equations in structural analysis.

1.3.2 Bending deflection

For a beam of length L, it is a simple matter to compute the bending
deformation y using the approximate parabolic relation

y ¼ L2

8R
: (1.20)

From Eq. (1.16), for a beam in pure bending,

y ¼ ML2

8EI
: (1.21)
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Most commonly, the moment is not uniform, as is the case when trans-
verse shear loads are introduced. Here, the curvature will vary along the beam,
and differential equations—well documented in basic strength of materials
literature3 but not detailed here—give rise to deformations dependent on load
and boundary conditions. For the simple case of the cantilever beam shown in
Fig. 1.5, the deformation under end load P is

y ¼ PL3

3EI
, (1.22)

and for the simply supported beam of Fig. 1.6,

y ¼ PL3

48EI
: (1.23)

Of course, deflection can be accompanied by rotation, which is the slope
of the deflection curve. Table 1.1 shows the typical cases of beam deflection
and rotation for various loading and support boundary conditions. Support
boundary conditions can be free, meaning no restraint, and free to translate
and rotate; roller, meaning free to translate in one direction but restrained in
the other, and free to rotate; pinned, meaning restrained in translation in both
directions but free to rotate; fixed, meaning restrained in both translation and
rotation; and guided, meaning not free to rotate but providing for freedom to
translate in one direction.

1.3.3 Shear stress due to bending

Section 1.1 presents the shear stress due to direct shear. When shear is
accompanied by bending, the maximum shear stress occurs at the neutral axis
and varies to zero at the free boundaries. In this case, the “average” shear

Figure 1.6 Simply supported beam bending under the central load will deflect at the center
according to Eq. (1.23). There is no translation at the end points, which are allowed to rotate.

Figure 1.5 Cantilever beam bending under the end load will deflect at end B according to
Eq. (1.22). There is no rotation or translation at fixed end A.
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stress of Eq. (1.9) is exceeded at the neutral zone. The maximum shear stress
can be computed as

t ¼ VQ
It

, (1.24)

where Q is the area moment about the neutral zone and is given as

Q ¼
Z

ydA, (1.24a)

Table 1.1 Moment, deflection, and rotation for various loading and boundary conditions.

Max.
Moment

Max.
Deflection

End Rotation

A B

Cantilever end load PL PL3/3EI 0 PL2/2EI

Cantilever end moment M ML2/2EI 0 ML/EI

Guided cantilever end load PL/2 PL3/12EI 0 0

Cantilever uniform load WL/2 WL3/8EI 0 WL2/6EI

Propped cantilever end
moment load

M ML2/27EI 0 ML/4EI

Simple support
central load

PL/4 PL3/48EI PL2/16EI PL2/16EI

Simple support
end moment

M 0.0612ML2/EI ML/6EI ML/3EI

Simple support
end moment

M ML2/8EI ML/2EI ML/2EI

Simple support
uniform load

WL/8 5WL3/38EI WL2/24EI WL2/24EI

Fixed support
central load

WL/8 WL3/192EI 0 0

Fixed supports
uniform load

WL/12 WL3/384EI 0 0
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and t is the thickness of the cross-section at the neutral zone. Equation (1.24)
can therefore be rewritten as

t ¼ kV
A

, (1.25)

where

k ¼ AQ
It

: (1.26)

For the case of a rectangle,

t ¼ 3V
2A

, (1.26a)

and for a circular cross-section,

t ¼ 4V
3A

: (1.26b)

1.3.4 Shear deflection due to bending (detrusion)

Similarly, Section 1.1 presents shear deflection of a beam due to direct shear.
When shear is accompanied by bending, shear deflection (sometimes referred
to as shear detrusion) depends on both the variation in shear across the beam
and the value of Q. In the case of a pure cantilever, we modify Eq. (1.10) and
find that

y ¼ kVL
AG

: (1.27)

For other loading and boundaries where the shear varies with beam
length, we can use energy methods to compute deflection. For example, for a
simply supported beam under a concentrated central load (first row of
Table 1.1),

y ¼ kVL
4AG

: (1.28)

The value of k [computed in Eq. (1.26)] assumes that, in computation of shear
deflection, the cross-section is free to warp. This is not the case for many
conditions of loading where shear changes abruptly, as in the case of the
simply supported beam with a concentrated central load. More-complex
strain energy formulation shows that, in this case for a rectangular
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cross-section, we find a modified coefficient as approximately k ¼ 6/5, and
for a circular cross-section, k ¼ 7/6.

Deflection due to shear is generally small compared to deflection due to
bending unless the span is short and/or the cross-section is deep. However, for
lightweight optics (Chapter 6), shear deflection does have added importance.

1.3.5 Torsion

The final degree of freedom is twist about the axial axis, or torsion. Torque T
(in units of pounds) is the torsional moment producing the twist. Again,
Hooke’s law applies, in this case, for shear [Eq. (1.8)]. Similar to what is done
in bending (but not shown here), it is derived that torsional stress t equals

t ¼ aTt
K

, (1.29)

where a is cross-section correction constant; t is the minimum thickness
dimension of the cross-section; and K, with units of length to the fourth
power, is called the torsional constant. The torsional constant equals the polar
moment of inertia J for a circular (solid or hollow) cross-section, where

J ¼ 2I : (1.30)

In this case, a ¼ 0.5 (note that t ¼ diameter), and

t ¼ TR
J

, (1.31)

where R is the cross-sectional radius.
For a noncircular cross-section, the torsional constant is not the polar

moment of inertia and needs a separate calculation. For a rectangular solid
cross-section,

K ¼ Bbt3, (1.32)

where b is the long-side width, and t is the short-side thickness of the section.
The value of the torsional stiffness constant B is given in the plot of Fig. 1.7 as
a function of the width-to-thickness ratio. Note that for thin sections, the
value of B approaches 1/3.

The value for the torsional stress constant a is given in the plot of Fig. 1.8.
Note that a approaches unity for a thin cross-section.

For hollow, thin-walled (t), closed, rectangular cross-sections,

K ¼ 4tA2
0

U
, (1.33)
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where A0 is the area enclosed by the mean center line of the wall, and U is the
perimeter of the mean centerline of the wall.

The value of a for use in Eq. (1.29) is

a ¼ 2A0

Ut
, (1.34)

from which we find that

t ¼ T
2A0t

: (1.35)

Figure 1.7 Torsional stiffness constant B versus width-to-thickness ratio for a rectangular
cross-section. Values approach one-third for a thin cross-section.

Figure 1.8 Torsional stress constant a versus width-to-thickness ratio for a rectangular
cross-section. Values approach unity for a thin cross-section.
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Note that for a hollow, circular cross-section, Eq. (1.35) reduces to

t ¼ TR
J

,

as it must.

1.3.5.1 Twist rotation

The angle of twist is similarly derived and is given as

u ¼ TL
KG

, (1.36)

where, again, K is the torsional constant depending on the cross-section as
discussed above. For thin-walled sections such as channel or U shapes, the
value of b can be assumed to be the total developed width of the section, to the
first order. Table 1.2 summarizes the value of K for typical cross-sections.

1.3.6 Hooke’s law summary

Some basic derivations using Hooke’s law have been presented. While the
stress and displacement calculations for more-complex situations are exhaus-
tive if not nearly infinite (and, again, well documented in standard engineering
texts and handbooks), the intent here is to set the foundation for the material
that follows only as applied to opto-structural analysis. With an understand-
ing of the basics of Hooke’s law, we can better understand its more-detailed
formulations.

1.4 Combining Stresses

When normal (perpendicular to the area cross-section) stresses from tension,
compression, or bending exist at a point, they can be combined directly. When
in-plane shear stresses from torsion or direct shear exist at a point, they can be
combined directly. However, as indicated in Section 1.2, stress, unlike force, is
not a vector and exists in multiple orientations. Thus, when shear stresses are
combined with normal stresses at a given point, they can neither be added
algebraically nor vector summed, as the rules of tensor addition will apply.
The addition can also be formulated by considerations of equilibrium. At any
angle in a plane, the normal and shear stresses are given, respectively, as

s ¼ ðsx þ syÞ
2

þ ðsx � syÞ
2

cos 2u� txy sin 2u, (1.37)

t ¼ ðsx � syÞ
2

sin 2uþ txy cos 2u: (1.38)
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Because these equations define the normal and shear stresses of a circle, a
technique that uses what’s called Mohr’s circle is very useful in visualizing
these stresses through their relationship to each other: At some angle, normal
stress will be maximum and will occur where the shear stress is zero.

Differentiating Eq. (1.37) with respect to angle u, and setting the resulting
expression equal to zero (max-minima problem), we can find the angle of the
maximum normal stress as

tan 2u ¼ 2t
ðsx � syÞ

: (1.39)

By substitution, the maximum normal stress is calculated as

Table 1.2 Torsional constant K for various cross-sections. Dimensions of the constant are
in length to the fourth power.

Section Torsional Constant K

Solid circle pD4/32

Solid square 0.141b4

Solid rectangle (see Fig. 1.7)

Hollow square tube b3/t

Round tube pD3t/4

Open section (thin wall) 0.333 (b1þ b2)t3
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s1 ¼
ðsx þ syÞ

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsx � syÞ2

4
þ t2

s
(1.40)

and is called the major principal stress.
The minimum stress is similarly found as

s2 ¼
ðsx þ syÞ

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsx � syÞ2

4
þ t2

s
(1.41)

and is called the minor principal stress.
The maximum shear stress will always occur 45 deg from the principal

stress angle and is calculated as

tmax ¼
ðs1 � s2Þ

2
: (1.42)

Note that the principal stress always equals or is greater than the applied
normal stress and is used for determining strength.

1.4.1 Brittle and ductile materials

Principal stresses are well correlated to test strength data obtained for
materials as long as they are brittle, since they generally have higher com-
pressive strength than tensile strength. Brittle materials exhibit a low strain
elongation to failure after the yield point is reached. With reference to
Fig. 1.4, note that all of what has been presented applies in the linear region of
a stress strain diagram, for which Hooke’s law applies, i.e., below the material
yield point at which it becomes nonlinear.

For ductile materials, the stresses are not conservative, and premature
yielding may result. In this case, distortion energy methods are used, resulting
in a maximum-stress prediction called von Mises stress. For two dimensions,
von Mises stress is given as

smax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1 � s1s2 þ s2

2

q
(1.43)

and should be used for materials that have high strain elongation before
failure in yield. Note that the von Mises stress is an “equivalent” stress to be
compared to the material yield strength and is not a true stress. Based on
distortion theory, the premise is that the material fails by distortion, or in
shear, as will be shown in the following example.
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Using the von Mises criteria for the case of an object in tension (x axis
only) and shear, we find from Eqs. (1.40), (1.41), and (1.43) that

smax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
x þ 3t2

q
: (1.44)

Under pure shear alone,

smax ¼
ffiffiffi
3

p
t, (1.45)

or

t ¼ smaxffiffiffi
3

p ¼ 0.577smax: (1.46)

Thus, the distortion energy theory predicts that the shear strength is 0.577
times the tensile strength. This relation is common for most metals and other
ductile isotropic materials.

A comparison of von Mises and principal stresses for typical, common 2D
states of stress is given in Table 1.3.

1.5 Examples for Consideration

It is useful to illustrate the principles we have just discussed with some simple
examples. We stress the word simple because the intent of this section is to
define the basics and the basis for the material to follow. More-complex
calculations will be introduced later as needed.

Example 1. Consider a beam fixed at one end (cantilevered) and loaded at its
free end with an axial tensile load (x axis) of P ¼ 1000 lbs and a shear Y load
of V ¼ 2000 lbs. The beam is 5 in. long with a rectangular cross-section of
dimensions ½ in. wide by 2 in. deep. It is made of aluminum with an elastic
modulus of 1.0 � 107 psi, a Poisson ratio of 0.33, and a yield strength of
35,000 psi.

Compute the following:

a) the normal stress sx
b) the shear stress t
c) the principal stresses s1,s2
d) the von Mises stress smax
e) the maximum shear stress tmax
f) the axial displacement x
g) the bending deflection yb
h) the shear deflection ys
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Solutions:

a) The normal stress due to the axial load [from Eq. (1.2)] is

s ¼ P
A

¼ 1000
1

¼ 1000 psi:

The normal stress due to the shear load results from the maximum
bending moment, which is M ¼ VL.

The normal bending stress [from Eq. (1.18)] is

s ¼ VLc
I

¼ 6VL
bh2

¼ 7500 psi:

At a particular point at the extreme fiber, we add the normal stresses.
The combined normal stress is s ¼ 1000þ 7500 ¼ 8500 psi.

Table 1.3 Principal and von Mises stresses for various elemental loading types. In general,
von Mises stress equals or exceeds principal stress in 2D analysis.

Principal Stress
Von Mises

StressMajor Minor

Uniaxial
tension

1 0 1

Pure shear 1 �1 1.732

Biaxial
tension

1 1 1

Tension and
compression

1 �1 1.732

Uniaxial
tension and shear

1.618 �0.618 2
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b) The shear stress [from Eq. (1.26a)] is

t ¼ 3V
2A

¼ 3000 psi:

c) The major principal stress [from Eq. (1.40)] is

s1 ¼
sx

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sx

2

�
2
þ t2

s
¼ 9450 psi,

and the minor principal stress [from Eq. (1.41)] is

s2 ¼
sx

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sx

2

�
2
þ t2

s
¼ �950 psi:

d) The von Mises stress is calculated from Eq. (1.43) as

s ¼ smax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1 � s1s2 þ s2

2

q
¼ 9960 psi:

The von Mises stress is only slightly higher than the principal stress but
should be used because the material is ductile.
e) The maximum shear stress is calculated from Eq. (1.42) as

tmax ¼
ðs1 � s2Þ

2
¼ 5200 psi:

f) The axial displacement [from Eq. (1.5)] is

x ¼ PL
AE

¼ 0.0005 in:

g) The bending deflection is found from Eq. (1.22) or Table 1.1 and is

yb ¼
VL3

3EI
¼ 0.025 in:

h) The shear deflection [from Eq. (1.27)] is

ys ¼
kVL
AG

, where k ¼ 6
5

ys ¼ 0.0032 in:

The shear deflection can be added directly to the bending deflection. Note
that shear deflection is typically small compared to bending deflection unless
the beam length is extremely small or the cross-section is very deep.
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Example 2. A cantilever beam having properties and dimensions identical to
those in Example 1 above is subjected to an end torsional twist of 4000 in-lb.

Compute the following:

a) the shear stress
b) the major principal stress
c) the von Mises stress
d) the angle of twist

Solution:

a) The shear stress [from Eq. (1.29)] is given as

t ¼ T
abt2

¼ 24800 psi:

b) The major principal stress [from Eq. (1.40)] equals the shear stress:

s1 ¼ 24800 psi:

c) The von Mises stress [from Eq. (1.45)] is

smax ¼
ffiffiffi
3

p
t ¼ 43000 psi:

Note that the von Mises stress is significantly higher than the principal
stress, and, in fact, exceeds the yield strength of the material. Since the
material is ductile, the von Mises stress should be used; if the principal
stress were used, a false sense of security might result, unless the user
is aware that shear strength drives the design. In the latter case, if the
principal stress were used, the astute analyst would check both the
principal and maximum shear stresses, and would see that shear
strength drives the design.

d) The angle of twist is computed from Eq. (1.36) as

u ¼ TL
KG

¼ TL
Bbt3

¼ 0.066 rad ¼ 3.8 deg :

1.6 Thermal Strain and Stress

As we have seen from Hooke’s law [Eqs. (1.1) and (1.4)], when an external
force is applied to a member, stress is produced, and that stress is always
accompanied by strain. There are cases, however, where strain is applied
without producing stress, as occurs under temperature loading. Consider, for
example, a beam of length L that is free to expand under a temperature
excursion DT.
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With no restraint, the beam grows an amount

y ¼ aLDT , (1.47)

where a is the effective thermal expansion coefficient of the material over the
temperature range of interest. The beam grows according to the diagram in
Fig. 1.9(a). The strain is

ε ¼ y
L
¼ aDT : (1.48)

Because this is the natural state in which the beam occurs, there is no stress.
Strain without stress is called eigenstrain.

If such a beam were completely restrained from growing [as in Fig. 1.9(b)],
the amount it would naturally grow is resisted by a force, which produces
stress. Thus, from Eqs. (1.5) and (1.48), we have

PL
AE

¼ aLDT ; therefore,

P ¼ AEaDT ,
(1.49)

and, therefore,

Figure 1.9 Thermal expansion under uniform temperature soak of (a) a stress-free
unconstrained beam and (b) a fully constrained beam inducing normal stress s. (c) Thermal
expansion of a stress-free beam simply supported at both ends with a uniform, linear, front-
to-back thermal gradient.
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s ¼ P
A

¼ EaDT : (1.50)

This simple equation is very important (because stress developed under
thermal strain when constrained will rarely exceed this amount) and serves as
an upper bound for first-order calculations. Along with Eq. (1.18), Eq. (1.50)
is one of the simplest and most important relationships in opto-structural
analysis. (Chapter 4 will expand on this in two dimensions).

Note that the resisting force is independent of length, and the developed
stress is independent of both length and cross-sectional area, which is nice.
Note further that if a member wants to expand and is not free to do so, the
force and stress are in compression; if it wants to shrink and is not free to do
so, it is in tension.

Similarly, consider a case in which a thermal gradient is applied through
the depth of the cross-section. For a linear gradient, we have again a case of
eigenstrain if the beam is unrestrained, and it will bend without stress to the
shape shown in Fig. 1.9(c). Here, the radius (of the neutral axis) is

R ¼ t
aDT

: (1.51)

For a positive expansion coefficient and a positive temperature change on
the top surface, the top tends to expand and bend the beam in a convex
direction. Again, if the beam is fully constrained, stress will develop with the
top surface in compression. (In thermal cases, you sometimes have to think
backward.) The developed stress for the fully constrained case is

s ¼ EaDT
2

: (1.52)

Note again, in this case, that the stress is independent of length and cross-
sectional area or bending (area moment of) inertia. This is nice. We will
expand on this in Chapter 4, where we will also discuss nonlinear gradients,
which do require cross-sectional knowledge. At this point, we have simply set
the stage for the more-detailed analyses that follow.

1.6.1 Thermal hoop stress

A common example of thermal stress occurs when two rings of differing
coefficients of thermal expansion (CTEs) are in contact in a thermal environ-
ment, resulting in an interference that produces hoop stress in both
components, as shown in Fig. 1.10. Hoop stress s is given as

s ¼ qR
A

, (1.53)
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where R is the mean ring radius at contact, q is the induced interference
pressure in pounds per inch, and A is the cross-sectional area of the individual
rings. What remains is to solve for q under a thermal soak condition. From
Hooke’s law, the induced circumferential strain is

ε ¼ s

E
¼ qR

AE
: (1.54)

The thermal strain is simply DaDT, in which

Da ¼ a1 � a2,

where the subscript numbers denote the outer and inner rings, respectively.
From compatibility, we have

a1Dt�
qR

ðAEÞ1
¼ a2Dtþ

qR
ðAEÞ2

: (1.55)

Solving for q, we obtain

q ¼ DaDTðAEÞ2h
1þ ðAEÞ2

ðAEÞ1

i
R
: (1.56)

The stress is recovered from Eq. (1.53).
Note that if the inner ring is very stiff relative to the outer ring, (AE)2 is set

to infinity in Eq. (1.55), and

q ¼ ðAEÞ1DaDT
R

: (1.57)

The outer ring stress [from Eq. (1.53)] is

Figure 1.10 Diagram illustrating hoop stress. Two rings of unit width and constant
thickness (A1 and A2) produce self-equilibrating pressure q when subjected to a
temperature change for given properties of modulus E and differing thermal expansion
coefficients a.
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s ¼ qR
A

¼ E1DaDT (1.58)

independent of both A and R.

1.6.1.1 Solid disk in ring

In the case of a circular, solid disk—as in an optical lens radially restrained in
a cell—the induced stress is uniform throughout; i.e., its principal stress is
identical at any point. Here, the lens strain is

ε ¼ s

E
¼ q

Eb
, (1.59)

and the induced stress is thus

s ¼ Eε ¼ q
b
: (1.60)

Therefore, under thermal soak, we can modify Eq. (1.55) to yield

DaDT ¼ qR
tbE1

þ q
E2b

, (1.55a)

where the subscripts 1 and 2 denote the ring and disk, respectively. Hence,
Eq. (1.56) can be written as

q ¼ DaDT�
R

tbE1
þ 1

E2b

� : (1.56a)

Note from Eq. (1.56a) that if the disk is very rigid relative to the ring, then the
ring stress is

s ¼ E1DaDT (1.58a)

independent of the radius, and the disk stress is

s ¼ E1tDaDT
R

, (1.60a)

which is inversely proportional to the radius.
Note from Eq. (1.56a) that if the ring is very rigid relative to the disk, then

the ring stress is
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s ¼ E2DaDTR
t

(1.58b)

directly proportional to the radius, and the disk stress is

s ¼ E2DaDT (1.60b)

independent of the radius.

Example.We can apply these relationships to the case of a lens cell housing an
optical lens. Consider a zinc sulfide lens 1 in. deep b and 4 in. in diameter
encased in a 1-in.-deep by 0.10-in.-thick t aluminum lens housing. Over a soak
from room temperature to 150 K, compute the stress in the lens and housing.
The following effective properties over the range of soak are given:

E1 ¼ 9.9� 106psi

E2 ¼ 1.08� 107psi

a1 ¼ 2.10� 10�5∕K

a2 ¼ 5.6� 10�6∕K

Since the lens is rigid relative to the housing, we find from Eq. (1.57), where
A ¼ bt, that

q ¼ ð1Þð0.1Þð9.9Þð15.4Þð143Þ
2

¼ 1100 lb∕in:,

and the housing stress from Eq. (1.58) is

s ¼ ð9.9Þð15.4Þð143Þ ¼ 21800 psi:

The line pressure q on the lens is the same as that on the housing, and the lens
stress, under uniform principal stress everywhere throughout, is recovered
from Eq. (1.60) as

s ¼ q
b
; therefore,

s ¼ 1100
1

¼ 1100 psi:

1.6.2 Ring in ring in ring

Similar to the thermal stress induced by the interference of two rings, it is
useful to review the case of thermal interference involving three rings. This
could occur, for example, when a thin isolation ring is housed between an
optic with a central hole and housing, or an insert is bonded to a housing. In
this case, we need to consider the strain compatibility relationships between
the inner and middle rings, and between the central and outer rings. This is a
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bit more complex than the two-ring problem. Figure 1.11 is a schematic of the
three-ring design, along with an equilibrium diagram. In this case, we need not
limit thickness to thin rings. Using thick-ring theory,4 and after tedious
calculations, we arrive at the individual ring stresses. We compute both radial
and hoop stresses for a total of 12 stresses. (Because the inner and outer radial
stresses are always zero, there are ten calculable stresses.) These stresses are
given in Table 1.4, and the numerous constants are defined in Table 1.5. These
constants are readily programmable to the stress equations of Table 1.4 by use
of a spreadsheet. Table 1.6 gives the material property constants used for
computation of the hoop and radial stresses defined in Table 1.5.

When the outermost (or innermost) ring is not present and the rings are
thin, the problem reduces to the simplified two-ring case of Eqs. (1.53) and
(1.56) (believe it or not) with an error difference of less than 5%.

Figure 1.11 Ring-in-ring-in-ring hoop stress. Each ring has an inner and outer radius R,
and each can have different modulus, thickness, and expansion characteristics. Expansion
leads to self-equilibrating pressure on each surface.

Table 1.4 Tri-ring hoop and radial stresses. Subscripts 1, 2, and 3 refer to inner, middle,
and outer rings, respectively; subscripts o and i refer to outer and inner surfaces
respectively; r is the radius at the specified interface; other constants are from Table 1.5.

sr1i Radial stress inner surface inner ring 0
su1i Hoop stress inner surface inner ring �2p12r10

2/A1m

sr10 Radial stress outer surface inner ring –p12
su10 Hoop stress outer surface inner ring –p12A1p/A1m

sr2i Radial stress inner surface middle ring –p12
su2i Hoop stress inner surface middle ring (p12 A2p � 2p23r20

2)/A2m

sr20 Radial stress outer surface middle ring –p23
su20 Hoop stress outer surface middle ring (2p12r2i

2� 2p23A2p)/A2m

sr3i Radial stress inner surface outer ring –p23
su3i Hoop stress inner surface outer ring p23 A3p/A3m

sr30 Radial stress outer surface outer ring 0
su30 Hoop stress outer surface outer ring 2p23r3i

2/A3m
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1.6.2.1 Case study

Consider a silicon optic with a central hole. The optic is supported by an
aluminum hub ring that is rigidly attached by a relatively soft isolation ring of
Vespel®, as shown in Fig. 1.12. The assembly is subjected to a soak change
of 100 °C. For the dimensions shown, determine the stress in the optic. The
effective properties over the thermal range are given in Table 1.7. The
maximum hoop stress is obtained from Tables 1.4 through 1.6 as

su3i ¼
p23A3p

A3m
¼ 5360 psi:

Note that, while this stress level may be well below the allowable value for
polished silicon, it would be problematic if excessively deep flaws were
present, as discussed in Chapter 12.

Table 1.5 Constants used for computation of the hoop and radial stresses defined in
Table 1.4. DT ¼ temperature soak.

A1p Geometry constant r1o
2þ r1i

2

A1m Geometry constant r12o
2� r12i

2

A2p Geometry constant r2o
2þ r2i

2

A2m Geometry constant r2o
2� r2i

2

A3p Geometry constant r3o
2þ r3i

2

A3m Geometry constant r3o
2� r3i

2

c1 Geometry/material constant r2i(A2p/A2mþ y2)/E2þ r10(A1p/A1m� y1)/E1

c2 Geometry/material constant �2r2ir2o
2/(E2A2m)

c3 Geometry/material constant �2r2i
2r2o/(E2A2m)

c4 Geometry/material constant r3i(A3p/A3mþ y3)/E3þ r20(A2p/A2m� y2)/E2

d12 Interference inner to middle ring DT(–r2ia2þ r1oa1)
d23 Interference middle to outer ring DT(–r3ia3þ r2oa2)
p12 Pressure inner to middle ring (c4d12� c2d23)/(c1c4� c2c3)
p23 Pressure middle to outer ring d12/c2� c1p12/c2

Table 1.6 Material property constants used for computation of the hoop and radial stresses
defined in Table 1.5.

E1 Young’s modulus inner ring Input
y1 Poisson’s ratio inner ring Input
a1 CTE inner ring Input
E2 Young’s modulus middle ring Input
y2 Poisson’s ratio middle ring Input
a2 CTE middle ring Input
E3 Young’s modulus outer ring Input
y3 Poisson’s ratio outer ring Input
a3 CTE outer ring Input
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1.6.3 Nonuniform cross-section

The previous discussion of a uniform cross-section shows thermal stress
independent of cross-section or length, approaching the maximum of
Eq. (1.50). However, for a nonuniform cross-section, this is not the case.

Consider, for example, the trapped 1D beam of Fig. 1.13 in which the
cross-section varies and undergoes a temperature change of DT. As it becomes
warmer, the beam tends to expand stress free as

y ¼ SaiLiDT : (1.61)

Figure 1.12 Diagram of the case study setup: an aluminum hub is placed in the central hole
of a silicon optic that is isolated with Vespel and undergoes a temperature soak to 100 °C.
Properties and dimensions are the same as those in the example in Section 1.6.1.1.

Table 1.7 Material and dimensional properties for the case study.

Material Modulus
Poisson’s Ratio CTE

Radius

Inner Outer
(psi) (ppm/°C) (inch) (inch)

Aluminum 1.00Eþ07 0.33 2.15E-05 5 5.50
Vespel 4.70Eþ05 0.35 4.00E-05 5.5 5.75
Silicon 1.90Eþ07 0.2 2.00E-06 5.75 8.00

Figure 1.13 A fixed beam with nonunform properties subjected to temperature soak can
produce extreme stress conditions.
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The rigid wall will not let it expand and pushes back with compressive force P.
Since the net deflection is zero, we have, from Hooke’s law,

P
�
S

�
Li

A1E1

��
¼ SaiLiDT (1.62)

so that

P ¼ SaiLiDT�
S Li

A1E1

� ,

and

s ¼ P
Ai

: (1.63)

For the case shown in Fig. 1.13, we have

P ¼ ð2a1L1 þ a2L2ÞDTA1A2E1E2

ð2L1A2E2 þ L2A1E1Þ
, (1.64)

and

s1 ¼
P
A1

¼ ð2a1L1 þ a2L2ÞDTA2E1E2

ð2L1A2E2 þ L2A1E1Þ
, (1.65a)

s1 ¼
P
A2

¼ ð2a1L1 þ a2L2ÞDTA1E1E2

ð2L1A2E2 þ L2A1E1Þ
: (1.65b)

Note that, unlike the uniform-cross-section case, stress is now dependent on
both area and length.

For the beam of Fig. 1.13, in which the modulus and CTE are constant
but the section length and the individual cross-sectional areas vary, we let
b ¼ A2/A1 and g ¼ L2/L1, and substituting into Eq. (1.64), find that

s2 ¼
2þ g

2bþ g
EaDT : (1.66)

For equal-length sections (L1 ¼ L2), if the central cross-section is significantly
smaller than the end cross-sections, its stress approaches

s2 ¼
P
A2

¼ 3EaDT , (1.67)

which is in considerable excess of that for the uniform case of Eq. (1.50).
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Should the thermal stress exceed the yield point of a particular ductile
material, the material will not necessarily fail as long as the thermal strain lies
under the material elongation capability. It will, however, be in a yielded
state, which may require consideration for critical performance criteria. Also,
if the load is compressive, buckling can occur, as discussed in the next section.

1.7 Buckling

This introductory chapter concludes with a note on critical buckling. Buckling
occurs when a compressive axial load reaches a certain limit, causing
instability. It occurs in long, slender beams. We concentrate here on 1D
instability, although buckling can certainly occur in plates and shells, which
are cases beyond the scope of what is presented here.

Consider the beam of Fig. 1.14 axially loaded along the x axis in com-
pression. If a small load or displacement is applied laterally at the location of
the axial load, the beam bends slightly. If the lateral load is removed, the beam
returns to its straight position. However, if the axial load is increased, now
causing an increased moment due to the lateral eccentricity, the beam becomes
unstable and does not return to its straight position when the lateral load is
removed. If the axial load increases further, the beam displacement becomes
very large, and the beam becomes unstable. This load is called the critical
buckling load. Note that this phenomenon will only occur in compression, as
tensile loading will serve to straighten any eccentric lateral displacement.

We can compute the critical load by using the bending and curvature
relations of Section 1.3 [Eq. (1.16)] and Fig. 1.4 to determine the point of
instability. Here, we see that

Figure 1.14 Critical buckling instability occurs at a critical load in compression due to small
lateral movement. The joint at the application of the load may be free, pinned, or fixed with
axial motion allowed. The base can be pinned or fixed. The critical load depends on these
boundary conditions.
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M ¼ EI
R

¼ EI
d2y
dx2

¼ Pðd� yÞ: (1.68)

This differential equation is readily solved by calculus techniques3 to produce
the critical load value at instability as

Pcr ¼
p2EI
4L2 : (1.69)

The solution is independent of the material strength and is only a function of
its stiffness.

While Eq. (1.69) is solved for the cantilever case, where critical value is the
lowest possible, solutions are found for varying boundary conditions. If the
beam is simply supported at its ends, the critical load is

Pcr ¼
p2EI
L2 : (1.70)

If it is fixed at both ends, the load is

Pcr ¼
4p2EI
L2 , (1.71)

which is the other extreme, so we have bounded the problem.
For many applications in optical structures, buckling needs to be

investigated as it may drive the design, even if stress values are below those
allowable. We will see an example of this in Chapter 3.
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