PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The surfaces of Ni50Ti50 shape memory alloys (SMAs) were patterned by laser scribing. This method is more simplistic and efficient than traditional indentation techniques, and has also shown to be an effective method in patterning these materials. Different laser energy densities ranging from 5 mJ/pulse to 56 mJ/pulse were used to observe recovery on SMA surface. The temperature dependent heat profiles of the NiTi surfaces after laser scribing at 56 mJ/pulse show the partially-recovered indents, which indicate a "shape memory effect (SME)" Experimental data is in good agreement with theoretical simulation of laser induced shock wave propagation inside NiTi SMAs. Stress wave closely followed the rise time of the laser pulse to its peak values and initial decay. Further investigations are underway to improve the SME such that the indents are recovered to a greater extent.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The alert did not successfully save. Please try again later.
Dovletgeldi Seyitliyev, Peizhen Li, Khomidkhodza Kholikov, Byron Grant, Zachary Thomas, Orhan Alal, Haluk E. Karaca, Ali O. Er, "Recoverable stress induced two-way shape memory effect on NiTi surface using laser-produced shock wave," Proc. SPIE 10092, Laser-based Micro- and Nanoprocessing XI, 100921J (17 February 2017); https://doi.org/10.1117/12.2252504