Presentation + Paper
20 September 2020 Analysis of deep learning architectures for turbulence mitigation in long-range imagery
David Vint, Gaetano Di Caterina, John Soraghan, Robert Lamb, David Humphreys
Author Affiliations +
Abstract
In long range imagery, the atmosphere along the line of sight can result in unwanted visual effects. Random variations in the refractive index of the air causes light to shift and distort. When captured by a camera, this randomly induced variation results in blurred and spatially distorted images. The removal of such effects is greatly desired. Many traditional methods are able to reduce the effects of turbulence within images, however they require complex optimisation procedures or have large computational complexity. The use of deep learning for image processing has now become commonplace, with neural networks being able to outperform traditional methods in many fields. This paper presents an evaluation of various deep learning architectures on the task of turbulence mitigation. The core disadvantage of deep learning is the dependence on a large quantity of relevant data. For the task of turbulence mitigation, real life data is difficult to obtain, as a clean undistorted image is not always obtainable. Turbulent images were therefore generated with the use of a turbulence simulator. This was able to accurately represent atmospheric conditions and apply the resulting spatial distortions onto clean images. This paper provides a comparison between current state of the art image reconstruction convolutional neural networks. Each network is trained on simulated turbulence data. They are then assessed on a series of test images. It is shown that the networks are unable to provide high quality output images. However, they are shown to be able to reduce the effects of spatial warping within the test images. This paper provides critical analysis into the effectiveness of the application of deep learning. It is shown that deep learning has potential in this field, and can be used to make further improvements in the future.
Conference Presentation
© (2020) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
David Vint, Gaetano Di Caterina, John Soraghan, Robert Lamb, and David Humphreys "Analysis of deep learning architectures for turbulence mitigation in long-range imagery", Proc. SPIE 11543, Artificial Intelligence and Machine Learning in Defense Applications II, 1154303 (20 September 2020); https://doi.org/10.1117/12.2573927
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Turbulence

Signal processing

Image analysis

Atmospheric optics

Cameras

Image quality

Image restoration

Back to Top