Presentation + Paper
2 August 2021 Ambient performance testing of the CubeSat Infrared Atmospheric Sounder (CIRAS)
Author Affiliations +
Abstract
Hyperspectral infrared measurements of Earth’s atmosphere from space have proven their value for weather forecasting, climate science and atmospheric composition. The CubeSat Infrared Atmospheric Sounder (CIRAS) instrument will demonstrate a fully functional infrared temperature, water vapor and carbon monoxide sounder in a CubeSat sized volume for at least an order of magnitude lower cost than legacy systems. Design for a CubeSat significantly reduces cost of access to space and enables flight in a constellation to reduce revisit time and enable new measurements including 3D winds. A technology demonstration of CIRAS is currently under development at JPL. The effort has completed integration and ambient testing of a high fidelity brassboard, complete with the flight configured optics assembly developed by Ball Aerospace with a JPL Immersion Grating and Black Silicon Entrance Slit. The brassboard includes a flight-configured High Operating Temperature Barrier Infrared Detector (HOT-BIRD) mounted in an Integrated Dewar Cryocooler Assembly (IDCA), enabling testing in the ambient environment. Ambient testing included radiometric testing of the system to characterize the instrument operability and NEdT. Spatial testing was performed to characterize the system line spread function (LSF) in two axes and report FWHM of the LSF. Spectral testing involved an air path test to characterize the spectral/spatial transformation matrix, and an etalon was used to measure the Spectral Response Functions (SRFs). Results of the testing show the CIRAS performs exceptionally well and meets the key performance required of the system. The end result of testing is the CIRAS instrument now meets TRL 4 with confidence in a brassboard configuration ready for thermal vacuum (TVac) testing necessary to achieve TRL 5 for the system.
Conference Presentation
© (2021) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Thomas S. Pagano, Mark A. Schwochert, Sir B. Rafol, Yuki Maruyama, Brian Monacelli, Dean L. Johnson, David Z. Ting, Daniel W. Wilson, Megan S. Gibson, Thomas U. Kampe, Juancarlos Soto, James Howell, and Robert C. Wilson "Ambient performance testing of the CubeSat Infrared Atmospheric Sounder (CIRAS)", Proc. SPIE 11832, CubeSats and SmallSats for Remote Sensing V, 118320D (2 August 2021); https://doi.org/10.1117/12.2593625
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Sensors

Fabry–Perot interferometers

Signal to noise ratio

Infrared radiation

Spectroscopy

Black bodies

Optical fabrication

Back to Top