Open Access Presentation
27 August 2021 Electro-optic quantum transduction between superconducting microwave qubits and optical photons
Author Affiliations +
Abstract
Quantum frequency conversion between superconducting (SC) microwave qubits and telecom optical photons is critical for long distance communication of networked SC quantum processors. While SC qubits operate at cryogenic temperatures to sustain their quantum coherence, converting them to the optical domain enables transferring the quantum states to room temperature and over long distances. For such a quantum state transduction process, several schemes have been investigated, including optomechanics, magnons, piezomechanics, and Pockels electro-optics (EO). The EO conversion approach is particularly attractive since it is broadband, low noise, mechanically and thermally stable (i.e., does not rely on freestanding structures), scalable (largescale integration of EO devices with superconducting circuits is possible), and tunable (e.g., using bias voltages). In this presentation we review our progress in an electro-optic based quantum transduction and discuss the promises and challenges.
Conference Presentation
© (2021) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Mo Soltani "Electro-optic quantum transduction between superconducting microwave qubits and optical photons", Proc. SPIE 11917, Photonics for Quantum 2019, 1191705 (27 August 2021); https://doi.org/10.1117/12.2609091
Advertisement
Advertisement
Back to Top