Paper
1 May 1990 Rotation of plasma membrane proteins measured by polarized fluorescence depletion
B. George Barisas, Noorul A. Rahman, Thomas M. Yoshida, Deborah A. Roess
Author Affiliations +
Abstract
We have implemented a new laser microscopic method, polarized fluorescence depletion (PFD), for measuring the rotational dynamics of functional membrane proteins on individual, microscopically selected cells under physiological conditions. This method combines the long lifetimes of triplet-state probes with the sensitivity of fluorescence detection to measure macromolecular rotational correlation times from 10 microsec to > 1 ms. As examples, the rotational correlation time of Fc receptors (FcR) on the surface of 2H3 rat basophilic leukemia cells is 79.9 4.4 microsec at 4°C when labeled with eosin conjugates of IgE. This value is consistent with the known 100 kDa receptor size. When labeled with intact F4 anti-FcR monoclonal antibody, the rotational correlation time for FcER is increased about 2-fold to 170.8 +/- 6.5 microsec, consistent with receptor dimer formation on the plasma membrane and with the ability of this antibody to form FcER dimers on 2H3 cell surfaces. We have also examined the rotational diffusion of the luteinizing hormone receptor on plasma membranes of small ovine luteal cells. Luteinizing hormone receptors (LHR), when occupied by ovine luteinizing hormone (oLH), have a rotational correlation time of 20.5 +/- 0.1 microsec at 4°C. When occupied by human chorionic gonadotropin (hCG), LHR have a rotational correlation time of 46.2 +/- 0.4 microsec suggesting that binding of hCG triggers additional LHR interactions with plasma membrane proteins. Together these studies suggest the utility of PFD measurements in assessing molecular size and molecular association of membrane proteins on individual cells. Relative advantages of time- and frequency-domain implementations of PFD are also discussed.
© (1990) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
B. George Barisas, Noorul A. Rahman, Thomas M. Yoshida, and Deborah A. Roess "Rotation of plasma membrane proteins measured by polarized fluorescence depletion", Proc. SPIE 1204, Time-Resolved Laser Spectroscopy in Biochemistry II, (1 May 1990); https://doi.org/10.1117/12.17722
Lens.org Logo
CITATIONS
Cited by 6 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Receptors

Luminescence

Proteins

Anisotropy

Diffusion

Plasma

Modulation

Back to Top