Poster + Paper
13 June 2023 Deep learning-based heterogeneous system for autonomous navigation
Timothy Sellers, Tingjun Lei, Daniel Carruth, Chaomin Luo
Author Affiliations +
Conference Poster
Abstract
In order to face the everyday growing population in today’s world, the deployment of autonomous vehicles is a promising direction for precision agriculture. Autonomous vehicles (AVs) have been developed and deployed for various agricultural needs such as field planting, harvesting, soil collection, and crop data collection. One method of achieving those task is complete coverage path planning (CCPP), which constructs a continuous path that covers a wide area of interest. However, in a large farm with multiple fields, those tasks have been extremely complicated and computationally expensive on a navigation system when utilizing a single AV. A heterogeneous system is proposed to sense the fields and solve the navigation and routing problem within multi-field path planning. We developed a deep learning-based routing scheme for Unmanned Aerial Vehicles (UAVs) to sense mature crops for harvest. The deep learning routing scheme utilizes a goal embedding feature and coordinate position feature to generate an optimal path for the Unmanned Aerial Vehicles, which allows them to find several candidate solutions. A deep learning-based complete coverage path planning (DL-CCPP) navigation scheme is also proposed for our Unmanned Ground Vehicle (UGVs) to navigate through the fields and collect the mature crops within them. The DL-CCPP uses UAV’s images in its deep learning network to construct the CCPP path from the AV coordinates.
© (2023) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Timothy Sellers, Tingjun Lei, Daniel Carruth, and Chaomin Luo "Deep learning-based heterogeneous system for autonomous navigation", Proc. SPIE 12539, Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping VIII, 125390F (13 June 2023); https://doi.org/10.1117/12.2665844
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Navigation systems

Unmanned vehicles

Agriculture

Unmanned aerial vehicles

Deep learning

Mathematical optimization

Algorithm development

Back to Top