Paper
24 July 1998 Lessons learned from multiple fidelity modeling of ground interferometer testbeds
Sanjay S. Joshi, Gregory W. Neat
Author Affiliations +
Abstract
The MicroPrecision Interferometer Testbed (MPI), at JPL is a dynamically and dimensionally representative hardware model of a future spaceborne optical interferometry. Over the past few years, several models of MPI have been created. These include detailed, high-fidelity models of MPI and several lower-fidelity models. These models were meant to answer two basic questions: (1) Does current modeling methodology allow accurate models of highly complex opto-mechanical systems such as the MPI testbed, and (2) given a valid modeling methodology, how much model fidelity is needed in models to accurately predict performance. In order to answer these questions, four models of the MPI testbed were created; each with a unique optical and structural model fidelity. This paper reviews results obtained for these models. It compares disturbance transfer function predictions from three of the models with measured disturbance transfer functions from the hardware testbed. Results suggest that it is possible to build a highly accurate high-fidelity model, thus validating the modeling methodology. With lower fidelity models, meaningful model prediction errors exist when simple models are used to represent the complex opto-mechanical system. However, modest increase in model fidelity can lead to significant improvement.
© (1998) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Sanjay S. Joshi and Gregory W. Neat "Lessons learned from multiple fidelity modeling of ground interferometer testbeds", Proc. SPIE 3350, Astronomical Interferometry, (24 July 1998); https://doi.org/10.1117/12.317188
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Systems modeling

Performance modeling

Integrated modeling

Interferometers

Data modeling

Optical components

Motion models

RELATED CONTENT


Back to Top