Paper
22 July 1998 Applications of MCT and QWIP to ballistic missile defense
Walter R. Dyer, Meimei Z. Tidrow
Author Affiliations +
Abstract
Infrared (IR) sensors are critical to all phases of ballistic missile defense (BMD), including surveillance, threat detection, tracking, identification, discrimination, targeting, and interception. The Discriminating Interceptor Technology Program (DITP) under development by the BMDO Sensors and Interceptors Directorate (BMDO/TOS) supports the requirements of BMDO's National Missile Defense and Theater Missile Defense to counter the emerging threat. Focal plane arrays (FPAs) with high sensitivity, high uniformity, large format, flexible wavelength ranges from mid-wave IR (MWIR) to very long wave IR (VLWIR), and multicolor capabilities are required. The effort is also toward FPAs with high reproducibility, high yield, low cost, and manufacturability. The two most promising near-term IR technologies to meet the BMD requirement are mercury cadmium telluride (MCT) photodiodes and quantum well infrared photodetectors (QWIPs). This paper discusses applications and relative merits of both of these detectors in BMDO applications.
© (1998) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Walter R. Dyer and Meimei Z. Tidrow "Applications of MCT and QWIP to ballistic missile defense", Proc. SPIE 3379, Infrared Detectors and Focal Plane Arrays V, (22 July 1998); https://doi.org/10.1117/12.317611
Lens.org Logo
CITATIONS
Cited by 5 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Quantum well infrared photodetectors

Sensors

Staring arrays

Long wavelength infrared

Electrons

Missiles

Defense and security

RELATED CONTENT


Back to Top