Paper
17 June 1998 Planarization technology of a-Si:H TFTs for AM LCDs
Je-Hsiung Lan, Jerzy Kanicki
Author Affiliations +
Proceedings Volume 3421, Display Technologies II; (1998) https://doi.org/10.1117/12.311061
Event: Asia Pacific Symposium on Optoelectronics '98, 1998, Taipei, Taiwan
Abstract
In this paper, we demonstrate that the large-area and high- aperture-ratio AM-LCDs can be realized by using planarization technology. Both a-Si:H TFT arrays and Cu-gate electrodes/buslines have been successfully planarized by low dielectric constant organic planarization polymer, benzocyclobutene (BCB). First, the impact of BCB interlayer thickness on vertical crosstalk, feedthrough voltage, and busline load capacitance is analyzed for the high-aperture- ratio pixel cell structure. For a given tolerance margin of crosstalk ratio, the pixel aperture-ratio decreases with an increase of interlayer dielectric constant, and such a reduction in aperture-ratio becomes more distinct in displays having a higher resolution. After the BCB passivation, there is no degradation in field-effect mobility and subthreshold swing for BCE type a-SI:H TFTs having different channel thicknesses and channel lengths. Finally, the electrical characteristics of Cu gate- planarized a-Si:H TFTs is presented. The device has a field- effect mobility of 0.73 cm2/V-s, a threshold voltage of 5.83, a subthreshold swing of 0.71 V/dec, and an ON/OFF- current ratio of 2.5 X 106. These results show that a combination of fully planarized Cu-gate lines and a-Si:H TFT-pixel arrays can be developed for large-area, high aperture-ratio, and high definition AM-LCDs.
© (1998) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Je-Hsiung Lan and Jerzy Kanicki "Planarization technology of a-Si:H TFTs for AM LCDs", Proc. SPIE 3421, Display Technologies II, (17 June 1998); https://doi.org/10.1117/12.311061
Lens.org Logo
CITATIONS
Cited by 12 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Electrodes

Capacitance

Copper

Dielectrics

Polymers

Liquid crystals

Capacitors

Back to Top