Paper
16 November 2000 Plasma-mediated tissue ablation with nanosecond laser pulses in the spectral region from ultraviolet to near infrared: in-vitro study with porcine myocardium tissue
Shunichi Sato, Makoto Ogura, Tomoaki Shimada, Miya Ishihara, Tsunenori Arai, Takemi Matsui, Akira Kurita, Minoru Obara, Makoto Kikuchi, Hitoshi Wakisaka, Hiroshi Ashida
Author Affiliations +
Abstract
With a Q-switched Nd:YAG laser (the fundamental band and its harmonics), ablation characteristics have been investigated in vitro for porcine myocardium tissue. At a constant laser intensity of approximately 2.0 GW/cm2, the laser pulses irradiated the tissue and the depth of the ablation hole formed was measured. After the laser irradiation, the tissue was histologically analyzed with an optical microscope and a polarization optical microscope to evaluate the laser-induced damage in the tissue. It was found that the ablation rate for a 1064-nm laser irradiation was comparably high to that for a 355-nm laser irradiation, and the ablation efficiency was lower for a 266-nm laser irradiation than for a 355-nm laser irradiation. During the ablation, strong plasma formation was observed for 266 nm and 1064 nm, while the laser-induced optical emission was dominated by fluorescence for 355 nm. The histology showed that the thermal damage thickness decreased with decreasing the wavelength for 266, 355, and 532 nm, but for 1064 nm thermal damage was very limited although a certain extent of mechanical damage was observed. Based on these experimental results, the ablation mechanism for each laser wavelength and the optimum laser wavelength for the TMLR (transmyocardial laser revascularization) are discussed.
© (2000) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Shunichi Sato, Makoto Ogura, Tomoaki Shimada, Miya Ishihara, Tsunenori Arai, Takemi Matsui, Akira Kurita, Minoru Obara, Makoto Kikuchi, Hitoshi Wakisaka, and Hiroshi Ashida "Plasma-mediated tissue ablation with nanosecond laser pulses in the spectral region from ultraviolet to near infrared: in-vitro study with porcine myocardium tissue", Proc. SPIE 4161, Optical Biopsy and Tissue Optics, (16 November 2000); https://doi.org/10.1117/12.409316
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Laser ablation

Laser tissue interaction

Laser optics

Laser irradiation

Plasma

Tissue optics

Pulsed laser operation

Back to Top