Paper
23 January 2002 Coupled-mode analysis of volume holograms in discretized domain
Author Affiliations +
Abstract
The Born approximation with paraxial assumption has often been utilized for a volume hologram analysis, which is a simple and useful method but has limits in the consideration of incident-wave depletion and multiple diffractions of both longitudinal and angular directions. In recent years, the random-phase code multiplexing has received considerable attention because it gives a sharp selectivity compared to other methods, such as angular multiplexing, wavelength multiplexing, etc. In this case, the image of the reference beam is randomly patterned that its spatial frequency bandwidth is widely spread. As the grain size of the random pattern decreases, its spatial frequency of the reference beam becomes more spread. As a result, the paraxial approximation may be insufficient with this case. In addition, the effect of multiple diffractions between different angular spectra can also be magnified because the structures of multiplexed volume holograms are more complicated than others. Here we analyze the volume holographic gratings based on the coupled-mode theory in discrete Fourier domain without assuming the paraxial approximation, in which the continuous spatial spectra of lights are discretized by discrete Fourier transform and the couplings among them are simultaneously considered into account. We propose two methodologies for the coupled-mode analysis of volume hologram: one is by discretization approach and the other by a first-order approximation. These approaches can be extended to any kind of volume hologram analysis, such as for the Fourier or Fresnel plane hologram that includes lenses or not. The selectivity and crosstalk of random-phase-multiplexed volume holograms are discussed by the two methods.
© (2002) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Yoonchan Jeong and Byoungho Lee "Coupled-mode analysis of volume holograms in discretized domain", Proc. SPIE 4459, Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications VII, and Optical Data Storage, (23 January 2002); https://doi.org/10.1117/12.454030
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Holograms

Volume holography

Multiplexing

Diffraction

Crystals

Gaussian beams

Speckle pattern

Back to Top