Paper
27 December 2001 Fabrication of polymer waveguide tapers to minimize insertion loss
Author Affiliations +
Abstract
Polymer based electro-optic (EO) modulators and other integrated optic devices have the potential to provide low cost and lightweight alternative for high-speed digital as well as analog RF links. To be truly competitive with existing technologies such as LiNbO3, EO polymer modulators must also meet the criteria of low loss. There are two major causes of loss in EO modulators: waveguide loss (including material loss, scattering, etc.), and fiber- to-waveguide coupling (butting) loss. Various techniques can be utilized to minimize these coupling losses, however, to maintain low cost of component, we resort to the simplest possible approach which is easy to manufacture. Pigtails using standard single mode fiber produce coupling loss on the order of 3 to 5 dB/connection. In order to improve mode size matching yet maintain low drive voltage we incorporate waveguide and fibers tapers. Waveguide tapers resulted to butting losses as low as 1.5 dB/connection, whereas fiber tapers resulted to 2.5 dB/connection butting losses. Combining both techniques together, it was possible to produce 1.3 dB/connection butting loss, however, tapered waveguide devices were less sensitive to alignment tolerance than tapered fiber devices, and therefore less sensitive to environmental conditions.
© (2001) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Araz Yacoubian, Weiping Lin, and James H. Bechtel "Fabrication of polymer waveguide tapers to minimize insertion loss", Proc. SPIE 4490, Multifrequency Electronic/Photonic Devices and Systems for Dual-Use Applications, (27 December 2001); https://doi.org/10.1117/12.455440
Lens.org Logo
CITATIONS
Cited by 8 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Waveguides

Optical fibers

Polymers

Single mode fibers

Modulators

Waveguide modes

Reactive ion etching

RELATED CONTENT


Back to Top