Paper
5 August 2003 Practical optimization of amplification mechanisms for piezoelectric actuators
Author Affiliations +
Abstract
A method for designing practical displacement amplification mechanisms for piezoelectric stack actuators was developed. The amplification mechanisms and the piezoelectric stack actuators were modeled using plane-strain finite elements. Optimal sizing and topology optimization were performed simultaneously to maximize the first natural frequency while satisfying free stroke and stress constraints. Optimal sizing variables were selected to control the kinematic behavior of the mechanism while a restricted variable thickness sheet topology optimization method was used to remove unnecessary material from stiff regions of the structure. Calculation of sensitivities was very efficient for the topology optimization variables but required the major portion of computational time for the optimal sizing variables. The method was applied to beam-type lever amplification mechanisms and two devices that included pre-stressing of the piezoelectric ceramics and pure translation of the output point were optimized, manufactured and tested. The results demonstrate that the method presented can be used to design amplified piezoelectric actuators that can be manufactured without interpretation by the designer.
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Philip W. Loveday "Practical optimization of amplification mechanisms for piezoelectric actuators", Proc. SPIE 5056, Smart Structures and Materials 2003: Smart Structures and Integrated Systems, (5 August 2003); https://doi.org/10.1117/12.483455
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Actuators

Optimization (mathematics)

Manufacturing

Ceramics

Amplifiers

Finite element methods

Kinematics

Back to Top