Paper
16 February 2005 Fabrication and simulation of novel crown-shaped microneedle array
Sommawan Khumpuang, Susumu Sugiyama
Author Affiliations +
Proceedings Volume 5651, Biomedical Applications of Micro- and Nanoengineering II; (2005) https://doi.org/10.1117/12.582360
Event: Smart Materials, Nano-, and Micro-Smart Systems, 2004, Sydney, Australia
Abstract
Recently, a novel crown-shaped microneedle array fabricated by deep X-ray lithography so called, quadruplets-microneedle array was reported. The microneedle requires no hole-fabrication whilst still can be used for a blood extraction system. Due to its quadruped tip, a deep channel formed by the space between each spike is used for storing blood by a capillary force. The particular shape of the microneedle is unrealizable by other microfabrication technology apart from PCT(Plain-pattern to Cross-section Transfer) technique. Nanoscaled tips and sloped side-wall of the structure ease a smooth skin-penetration. A model for simulating the capillary height of the extracted blood for this specific shape has been developed since the typical capillary theory is suitable for the only tube shape of liquid channel. The result of simulation conforms to the practical extraction test of the microneedle. The amount of blood retained inside the microneedle can be predicted by the height obtained from the simulation. Besides the PCT technique, the electroforming of Nickel has been demonstrated in order to fabricate the mold. The injections of polycarbonate is then performed for final structures. The cost of each microneedle array after a large volume-production has been dumped to be less than a US dollar. In this paper, the fabrication process and capillary models for individual simulation of the quadruplets-microneedle will be reported.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Sommawan Khumpuang and Susumu Sugiyama "Fabrication and simulation of novel crown-shaped microneedle array", Proc. SPIE 5651, Biomedical Applications of Micro- and Nanoengineering II, (16 February 2005); https://doi.org/10.1117/12.582360
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication and 1 patent.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Capillaries

Liquids

Blood

Polymethylmethacrylate

X-rays

Device simulation

Nickel

Back to Top