Abstract
Honeywell International has developed and flight-tested a Corrosion and Corrosivity Monitoring System (C2MS). The C2MS detects galvanic corrosion in the main gearbox feet fasteners of helicopters. In addition, it monitors the environmental conditions inside the main floorboard compartment to determine the need for structural maintenance. The C2MS sensor on a main gearbox feet fastener sends a small electrical signal through the fastener and housing to measure the conductivity of the assembly. The measured conductivity value is used to determine if galvanic corrosion is present in the fastener assembly. The floorboard compartment sensors use a surrogate metal coupon to measure the corrosivity of the environment. The information from this sensor is used to recommend an extension to the calendar-based maintenance schedule. Fleet-wide information can be gathered by the system. The C2MS uses two Data Collection Units (DCUs) to store the corrosion data: one for the main gearbox feet fasteners and one for the main floorboard compartment. The DCU design addresses the issues of long battery life for the C2MS (greater than 2 years) and compactness. The data from the DCUs is collected by a personal digital assistant and downloaded to a personal computer where the corrosion algorithms reside. The personal computer display provides the location(s) of galvanic corrosion in the main gearbox feet fasteners as well as the recommended date for floorboard compartment maintenance. This paper discusses the methodology used to develop the C2MS software and hardware, presents the principles of the galvanic corrosion detection algorithm, and gives the laboratory and flight test results that document system performance in detecting galvanic corrosion (detection and false alarm rate). The paper also discusses the benefits of environmental sensors for providing a maintenance scheduling date.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Russ Braunling and Paul Dietrich "Corrosion and corrosivity monitoring system", Proc. SPIE 5765, Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, (17 May 2005); https://doi.org/10.1117/12.599985
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication and 1 patent.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Corrosion

Sensors

Environmental sensing

Metals

Inspection

Resistance

Personal digital assistants

RELATED CONTENT


Back to Top