Paper
10 April 2008 Architecture for the semi-automatic fabrication and assembly of thin-film based dielectric elastomer actuators
M. Randazzo, R. Buzio, G. Metta, G. Sandini, U. Valbusa
Author Affiliations +
Abstract
One problem related to the actuation principle of macroscopic dielectric elastomer actuators is the high voltage required, typically in the Kilovolt range, that imposes particular care in the insulation of the whole actuator from the surrounding environment. This high actuation voltage, however, can be drastically reduced if a thin film of dielectric elastomer is used. Despite this, the manufacture of a macroscopic stack-like actuator, starting from thin films of dielectric elastomer can present many manufacture difficulties, like the handling and the assembly of the films, the power distribution to hundreds or thousands of layers, the presence of defects in one single layer that can cause the complete failure of the whole actuator. In this paper, a fast, semi-automatic process is proposed for the manufacture of modular units of dielectric elastomer, each of them consisting of many layers of rolled thin dielectric film. All the manufactured units are independent and take their power from a lateral, compliant supply rail that contacts the sides the electroded layers. This design is very suitable for industrial production: each module can be independently tested and then assembled in a complete macroscopic actuator composed by an unlimited number of these modules. The simple assembly methodology and the semi-automatic manufacture process described in this paper allows the fabrication of multilayer stacked devices, that can be used both as contractile or expanding actuators.
© (2008) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
M. Randazzo, R. Buzio, G. Metta, G. Sandini, and U. Valbusa "Architecture for the semi-automatic fabrication and assembly of thin-film based dielectric elastomer actuators", Proc. SPIE 6927, Electroactive Polymer Actuators and Devices (EAPAD) 2008, 69272D (10 April 2008); https://doi.org/10.1117/12.784981
Lens.org Logo
CITATIONS
Cited by 4 scholarly publications and 6 patents.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Actuators

Dielectrics

Electrodes

Multilayers

Thin films

Manufacturing

Dielectric elastomer actuators

Back to Top