Paper
18 March 2009 Improving the performance of the actinic inspection tool with an optimized alignment procedure
Author Affiliations +
Abstract
Extreme ultraviolet (EUV) microscopy is an important tool for the investigation of the performance of EUV masks, for detecting the presence and the characteristics of defects, and for evaluating the effectiveness of defect repair techniques. Aerial image measurement bypasses the difficulties inherent to photoresist imaging and enables high data collection speed and flexibility. It provides reliable and quick feedback for the development of masks and lithography system modeling methods. We operate the SEMATECH Berkeley Actinic Inspection Tool (AIT), a EUV microscope installed at the Advanced Light Source at Lawrence Berkeley National Laboratory. The AIT is equipped with several highmagnification Fresnel zoneplate lenses, with various numerical aperture values, that enable it image the reflective mask surface with various resolution and magnification settings. Although the AIT has undergone significant recent improvements in terms of imaging resolution and illumination uniformity, there is still room for improvement. In the AIT, an off-axis zoneplate lens collects the light coming from the sample and an image of the sample is projected onto an EUV-sensitive CCD camera. The simplicity of the optical system is particularly helpful considering that the AIT alignment has to be performed every time that a sample or a zoneplate is replaced. The alignment is sensitive to several parameters such as the lens position and orientation, the illumination direction and the sample characteristics. Since the AIT works in high vacuum, there is no direct access to the optics or to the sample during the alignment and the measurements. For all these reasons the alignment procedures and feedback can be complex, and in some cases can reduce the overall data throughput of the system. In this paper we review the main strategies and procedures that have been developed for quick and reliable alignments, and we describe the performance improvements we have achieved, in terms of aberration magnitude reduction.
© (2009) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Iacopo Mochi, Kenneth A. Goldberg, Patrick Naulleau, and Sungmin Huh "Improving the performance of the actinic inspection tool with an optimized alignment procedure", Proc. SPIE 7271, Alternative Lithographic Technologies, 727123 (18 March 2009); https://doi.org/10.1117/12.814261
Lens.org Logo
CITATIONS
Cited by 15 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Monochromatic aberrations

Photomasks

Extreme ultraviolet

Inspection

Point spread functions

Alignment procedures

Algorithm development

Back to Top