Paper
12 March 2010 An observation model for motion correction in nuclear medicine
Majdi R. Alnowami, E. Lewis, M. Guy, K. Wells
Author Affiliations +
Abstract
This paper describes a method of using a tracking system to track the upper part of the anterior surface during scanning for developing patient-specific models of respiration. In the experimental analysis, the natural variation in the anterior surface during breathing will be modeled to reveal the dominant pattern in the breathing cycle. The main target is to produce a patient-specific set of parameters that describes the configuration of the anterior surface for all respiration phases. These data then will be linked to internal organ motion to identify the effect of the morphology of each on motion using particle filter to account for previously unseen patterns of motion. In this initial study, a set of volunteers were imaged using the Codamotion infrared marker-based system. In the marker-based system, the temporal variation of the respiratory motion was studied. This showed that for the 12 volunteer cohort, the mean displacement of the thorax surface TS (abdomen surface AS) region is 10.7±5.6 mm (16.0±9.5mm). Finally, PCA was shown to capture the redundancy in the data set with the first principal component (PC) accounting for more than 96% of the overall variance in both AS and TS datasets. A fitting to the dominant modes of variation using a simple piecewise sinusoid has suggested a maximum error of about 1.1mm across the complete cohort dataset.
© (2010) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Majdi R. Alnowami, E. Lewis, M. Guy, and K. Wells "An observation model for motion correction in nuclear medicine", Proc. SPIE 7623, Medical Imaging 2010: Image Processing, 76232F (12 March 2010); https://doi.org/10.1117/12.844376
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Principal component analysis

Motion models

Nuclear medicine

Motion analysis

Infrared imaging

Motion measurement

Particle filters

Back to Top